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Recap

Proved existence of partitions of unity.

Applications: Bump functions, Extensions from closed sets,
Smooth exhaustions, Level sets.

Derivations on Rn and isomorphism using directional
derivatives.
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Tangent vectors on manifolds

Let M be smooth manifold (with or without boundary). A
linear map w : C∞(M)→ R is called a derivation at p, if
w(fg) = w(f )g(p) + f (p)w(g).

The set of all derivations at p can be made into a vector
space over R and is denoted as TpM (the tangent space at
p). An element of TpM is called a tangent vector at p.

Proposition (how to prove?): Suppose p ∈ M, v ∈ TpM, and
f , g ∈ C∞(M). Then, if f is constant, v(f ) = 0. Moreover, if
f (p) = g(p) = 0, then v(fg) = 0.
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Pushforward/differential of smooth maps

We need to connect TpM to TpRn using coordinate charts.
To this end, we need to know how smooth maps change
tangent spaces.

For maps between Rn, tangent space changes can be
computed using the derivative matrix which is a linear map
from Rn to itself. Unfortunately, the notion of a linear map
between manifolds makes no sense. The best we can hope for
is a linear map between tangent spaces.

Let M,N be manifolds (with or without boundary),
F : M → N be a smooth map. The pushforward/differential
(F∗)p : TpM → TF (p)N of F at p is defined as the derivation
(F∗)p(v)(f ) = v(f ◦ F ). (why is it a derivation?)

Properties: F∗ is linear, ((G ◦ F )∗)p = (G∗)F (p) ◦ (F∗)p,
I∗ = I , and if F is a diffeo, then (F∗)

−1
p = ((F−1)∗)F (p).
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Some more properties

Let M be a manifold with or without boundary.

Locality: Suppose v ∈ TpM. If f , g ∈ C∞(M) agree on a
neighbourhood U of p, then v(f ) = v(g).

Proof: Let ρ : M → R be a bump such that ρ = 1 on V ⊂ U
and supp(ρ) ⊂ U. Then ρ(f − g) = 0 on M. Now
0 = v(ρ(f − g)) = 0 + ρ(p)v(f − g) = v(f − g).

Identification for open submanifolds: Let U ⊂ M be an open
subset. Then (i∗)p : TpU → TpM is an isomorphism for all
p ∈ U.

Proof: 1-1: If (i∗)p(v) = 0, then whenever f ∈ C∞(M), and
v(f ‖U) = 0, then suppose g ∈ C∞(U). Let ρ : M → R be a
bump function equal to 1 in a neighbourhood of p and
supp(ρ) ⊂ U. Thus ρg : M → R agrees with f in a
neighbourhood of p. Hence v(ρg) = 0 = v(g) because ρg
agrees with g in a neighbourhood of p. Thus v = 0.
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Some more properties

Onto: Let w ∈ TpM. Given f ∈ C∞(U), define
v(f ) = w(ρf ). We claim that w(ρ1f ) = w(ρ2f ) if ρ1, ρ2 are
two bump functions around p. Indeed, w((ρ1 − ρ2)f ) = 0
because (ρ1 − ρ2)f agrees with the constant function zero in
a neighbourhood of p. Thus,
v(fg) = w(ρfg) = w(ρ2fg) = w(ρf )g(p) + w(ρg)f (p). Thus
v ∈ TpU and i∗(v)(f ) = v(f |U) = w(ρf |U) = w(ρf ).

Since this isomorphism is independent of choices, we abuse
notation and identify TpU with TpM without mentioning the
same.

Dimension: If M is an n-dimensional manifold (without
boundary), then TpM is n-dimensional. (This is applicable
even to interior points on manifolds-with-boundary.)

Proof:Let (φ,U) be a coordinate chart around p. Then
(φ∗)p : TpU = TpM → Tφ(p)(φ(U)) = Tφ(p)Rn = Rn is an
isomorphism.
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Manifolds-with-boundary

Unfortunately, this theorem cannot be directly applied to the
boundary points on manifolds-with-boundary. (Because Hn is
not an open subset of Rn.) So what is the dimension of TpM
for a boundary point? Is it n or n − 1? (Spoiler alert: It is n.)

For any a ∈ ∂Hn, (i∗)a : TaHn → TaRn is an isomorphism.

Proof: 1-1: Let v ∈ TaHn such that i∗v = 0, and
f ∈ C∞(Hn). Let f̃ be a smooth extension to Rn. Now
0 = i∗v(f̃ ) = v(f̃ ◦ i) = v(f ).
Onto: Let w = w i ∂

∂x i
∈ TaRn. Let f ∈ C∞(Hn). Define f̃ as

a smooth extension of f to Rn and v(f ) = w(f̃ ) = w i ∂ f̃
∂x i

(a) =

and is hence independent of the choice of f̃ (because of
continuity). v is a derivation and hence we are done.

Corollary: The dimension of TpM even for
manifolds-with-boundary is dim(M).
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Examples of tangent spaces

Let V be a f.d normed vector space treated as a smooth
manifold. Consider the map Da,v f = df (a+tv)

dt . This map gives
an isomorphism of V to TaV that commutes with linear maps
to other vector spaces (what does this mean and why?)

Thus we can canonically identify V with TaV . Moreover, if
M ⊂ V is an open submanifold, then TaM = TaV = V . Thus
TaGL(n,R) = M(n,R).

Let M1,M2, . . . ,Mk be smooth manifolds (without boundary).
Then αp : Tp(M1 ×M2 . . .)→ TpM1 × TpM2 . . . given by
αp(v) = ((π1)∗(v), (π2)∗(v), . . .) is an isomorphism.
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Tangent spaces and pushforwards in coordinate charts

Proposition: Let M be a smooth n-manifold with or without
boundary, and p ∈ M. For any chart (U, x i ) around p, the
(pushforwards of) the coordinate vectors ∂

∂x i
form a basis for

TpM, i.e., If f ∈ C∞(M), then v(f ) = v i ∂f ◦φ
−1

∂x i
(φ(p)). As

always, we abuse notation and drop the φ. So
v(f ) = v i ∂f

∂x i
(p).

The vectors ∂
∂x i

are called a coordinate basis for TpM. Since
the map v → Dp,v is an isomorphism in Rn, these vectors can
also be identified with e1 = (1, 0, 0 . . .), . . .. The components
of v in a coordinate chart (U, x i ) are v i = v(x i ).
Let F : U ⊂ Rm → V ⊂ Rn be a smooth map. Then
F∗(

∂
∂x i

)(f ) = ∂(f ◦F )
∂x i

(p) = ∂f
∂y j (F (p))∂F

j

∂x i
(p). In other words,

F∗
∂
∂x i

= ∂F j

∂x i
∂
∂y j . Thus if v is treated as column vector ~v with

components v i , then F∗v is a column vector obtained by
[DF ]~v . The same formula (with abuse of notation)holds for
F : M → N and (U, x i ), (V , y j) are coordinates around
p,F (p).
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