MA 229/MA 235 - Lecture 25

IISc

э

Recap

æ

<ロ> <同> <同> < 同> < 同>

• Change of variables formula.

- Change of variables formula.
- Integration of top forms in \mathbb{R}^n

• Recall that it makes

• Recall that it makes no sense to try to define

• Recall that it makes no sense to try to define the integral of a function $f: M \to \mathbb{R}$ on a manifold

 Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates,

Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand,

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms.

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive?

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning:

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning: This definition is useful when dim(M) > 1 or ∂M = φ.):

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning: This definition is useful when dim(M) > 1 or ∂M = φ.): Suppose M is a smooth manifold (with or without boundary)

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning: This definition is useful when dim(M) > 1 or ∂M = φ.): Suppose M is a smooth manifold (with or without boundary) and (x_α, U_α) is a smooth atlas consisting of connected charts

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning: This definition is useful when dim(M) > 1or $\partial M = \phi$.): Suppose M is a smooth manifold (with or without boundary) and (x_{α}, U_{α}) is a smooth atlas consisting of connected charts such that $det(\frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{j}}) > 0$ on $U_{\alpha} \cap U_{\beta}$ for all α, β ,

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning: This definition is useful when dim(M) > 1or $\partial M = \phi$.): Suppose M is a smooth manifold (with or without boundary) and (x_{α}, U_{α}) is a smooth atlas consisting of connected charts such that $det(\frac{\partial x_{\alpha}^{i}}{\partial x_{\beta}^{i}}) > 0$ on $U_{\alpha} \cap U_{\beta}$ for all

 $\alpha,\beta,$ then we say that ${\it M}$ is equipped with an oriented atlas/

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning: This definition is useful when dim(M) > 1 or ∂M = φ.): Suppose M is a smooth manifold (with or without boundary) and (x_α, U_α) is a smooth atlas consisting of connected charts such that det(∂x_αⁱ/∂x_αⁱ) > 0 on U_α ∩ U_β for all

 $\alpha,\beta,$ then we say that M is equipped with an oriented atlas/ M has a given orientation. (

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning: This definition is useful when dim(M) > 1 or ∂M = φ.): Suppose M is a smooth manifold (with or without boundary) and (x_α, U_α) is a smooth atlas consisting of connected charts such that det(∂x_αⁱ/∂x^j) > 0 on U_α ∩ U_β for all

 α, β , then we say that *M* is equipped with an oriented atlas/ *M* has a given orientation. (If such an atlas exists,

- Recall that it makes no sense to try to define the integral of a function f : M → ℝ on a manifold because when we change coordinates, the integral does not remain invariant.
- On the other hand, in \mathbb{R}^n we can define the integrals of top forms. So we could try $\int_M \omega = \sum_i \int_{\mathbb{R}^n} \rho_i f dx^1 dx^2 \dots$ The only problem is that the sign of the Jacobian plays a role in the change of variables formula.
- What if we could cover *M* by coordinate charts such that the Jacobians are all positive? In this case, we have some hope.
- "Def" (Warning: This definition is useful when dim(M) > 1 or ∂M = φ.): Suppose M is a smooth manifold (with or without boundary) and (x_α, U_α) is a smooth atlas consisting of connected charts such that det(∂x_αⁱ/∂x_α^j) > 0 on U_α ∩ U_β for all

 α, β , then we say that M is equipped with an oriented atlas/ M has a given orientation. (If such an atlas exists, then we say that M is orientable.)

Orientation

⊡ ► < ≣

• When do we say that

• When do we say that two such atlases give the

• When do we say that two such atlases give the "same" orientation?

- When do we say that two such atlases give the "same" orientation?
- Def:

- When do we say that two such atlases give the "same" orientation?
- \bullet Def: Two smooth oriented atlases ${\cal A}$ and ${\cal B}$ are

- When do we say that two such atlases give the "same" orientation?
- Def: Two smooth oriented atlases \mathcal{A} and \mathcal{B} are said to be compatible orientation-wise/
- When do we say that two such atlases give the "same" orientation?
- Def: Two smooth oriented atlases \mathcal{A} and \mathcal{B} are said to be compatible orientation-wise/define the same orientation if

- When do we say that two such atlases give the "same" orientation?
- Def: Two smooth oriented atlases A and B are said to be compatible orientation-wise/define the same orientation if A∪B is an oriented atlas.

- When do we say that two such atlases give the "same" orientation?
- Def: Two smooth oriented atlases A and B are said to be compatible orientation-wise/define the same orientation if A∪B is an oriented atlas.
- Suppose *M* is orientable.

- When do we say that two such atlases give the "same" orientation?
- Def: Two smooth oriented atlases A and B are said to be compatible orientation-wise/define the same orientation if A∪B is an oriented atlas.
- Suppose *M* is orientable. Then orientation-compatibility is an equivalence relation among oriented atlases (why?)

- When do we say that two such atlases give the "same" orientation?
- Def: Two smooth oriented atlases A and B are said to be compatible orientation-wise/define the same orientation if A∪B is an oriented atlas.
- Suppose *M* is orientable. Then orientation-compatibility is an equivalence relation among oriented atlases (why?)
- To determine

- When do we say that two such atlases give the "same" orientation?
- Def: Two smooth oriented atlases A and B are said to be compatible orientation-wise/define the same orientation if A∪B is an oriented atlas.
- Suppose *M* is orientable. Then orientation-compatibility is an equivalence relation among oriented atlases (why?)
- To determine the number of equivalence classes,

- When do we say that two such atlases give the "same" orientation?
- Def: Two smooth oriented atlases A and B are said to be compatible orientation-wise/define the same orientation if A∪B is an oriented atlas.
- Suppose *M* is orientable. Then orientation-compatibility is an equivalence relation among oriented atlases (why?)
- To determine the number of equivalence classes, we need a more concise interpretation of orientation.

æ

• Given an oriented manifold $(M, (x_{\alpha}, U_{\alpha}))$,

Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas.

• Given an oriented manifold $(M, (x_{\alpha}, U_{\alpha}))$, let ρ_{α} be a partition-of-unity subordinate to the atlas. Define $\omega = \sum_{\alpha} \rho_{\alpha} dx_{\alpha}^{1} \wedge dx_{\alpha}^{2} \dots$

• Given an oriented manifold $(M, (x_{\alpha}, U_{\alpha}))$, let ρ_{α} be a partition-of-unity subordinate to the atlas. Define $\omega = \sum_{\alpha} \rho_{\alpha} dx_{\alpha}^{1} \wedge dx_{\alpha}^{2} \dots$ Note that $\omega \neq 0$ anywhere (why?)

• Given an oriented manifold $(M, (x_{\alpha}, U_{\alpha}))$, let ρ_{α} be a partition-of-unity subordinate to the atlas. Define $\omega = \sum_{\alpha} \rho_{\alpha} dx_{\alpha}^{1} \wedge dx_{\alpha}^{2} \dots$ Note that $\omega \neq 0$ anywhere (why?) Moreover, ω is a positive multiple of

 Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1.

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form,

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose *M* either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose *A* is any atlas consisting of connected charts.

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose A is any atlas consisting of connected charts. We can change the charts and produce a new atlas

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose A is any atlas consisting of connected charts. We can change the charts and produce a new atlas to make sure that

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose A is any atlas consisting of connected charts. We can change the charts and produce a new atlas to make sure that ω([∂]/_{∂x¹_α}, [∂]/_{∂x²_α}, ...) > 0 for all α (how?)

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose \mathcal{A} is any atlas consisting of connected charts. We can change the charts and produce a new atlas to make sure that $\omega(\frac{\partial}{\partial x_{\alpha}^{1}}, \frac{\partial}{\partial x_{\alpha}^{2}}, \ldots) > 0$ for all α (how?)
- So a manifold (such that dim(M) > 1 or $\partial M = \phi$)

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose \mathcal{A} is any atlas consisting of connected charts. We can change the charts and produce a new atlas to make sure that $\omega(\frac{\partial}{\partial x_{\alpha}^{1}}, \frac{\partial}{\partial x_{\alpha}^{2}}, \ldots) > 0$ for all α (how?)
- So a manifold (such that dim(M) > 1 or ∂M = φ) is orientable iff

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose \mathcal{A} is any atlas consisting of connected charts. We can change the charts and produce a new atlas to make sure that $\omega(\frac{\partial}{\partial x_{\alpha}^{1}}, \frac{\partial}{\partial x_{\alpha}^{2}}, \ldots) > 0$ for all α (how?)
- So a manifold (such that dim(M) > 1 or ∂M = φ) is orientable iff it admits a nowhere vanishing top form.

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose \mathcal{A} is any atlas consisting of connected charts. We can change the charts and produce a new atlas to make sure that $\omega(\frac{\partial}{\partial x_{\alpha}^{1}}, \frac{\partial}{\partial x_{\alpha}^{2}}, \ldots) > 0$ for all α (how?)
- So a manifold (such that dim(M) > 1 or ∂M = φ) is orientable iff it admits a nowhere vanishing top form. We say that a chart is compatible with

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose \mathcal{A} is any atlas consisting of connected charts. We can change the charts and produce a new atlas to make sure that $\omega(\frac{\partial}{\partial x_{\alpha}^{1}}, \frac{\partial}{\partial x_{\alpha}^{2}}, \ldots) > 0$ for all α (how?)
- So a manifold (such that dim(M) > 1 or ∂M = φ) is orientable iff it admits a nowhere vanishing top form. We say that a chart is compatible with an orientation form ω if

- Given an oriented manifold (M, (x_α, U_α)), let ρ_α be a partition-of-unity subordinate to the atlas. Define
 ω = Σ_α ρ_α dx¹_α ∧ dx²_α.... Note that ω ≠ 0 anywhere (why?)
 Moreover, ω is a positive multiple of dx¹_α ∧ dx²_α... for all α.
- Conversely, suppose M either does not have a boundary or dim(M) > 1. Also suppose ω is a nowhere vanishing top form, and suppose A is any atlas consisting of connected charts. We can change the charts and produce a new atlas to make sure that ω([∂]/_{∂x¹_α}, [∂]/_{∂x²_α}, ...) > 0 for all α (how?)
- So a manifold (such that dim(M) > 1 or ∂M = φ) is orientable iff it admits a nowhere vanishing top form. We say that a chart is compatible with an orientation form ω if ω(∂/∂x¹,...) > 0 at all points.

• In fact,

3

æ

• In fact, define an equivalence relation between nowhere vanishing top forms:

 In fact, define an equivalence relation between nowhere vanishing top forms: ω ∼ ω' if ω = fω' where f > 0.

In fact, define an equivalence relation between nowhere vanishing top forms: ω ~ ω' if ω = fω' where f > 0. Then if M is connected we have exactly two equivalence classes (why?)

- In fact, define an equivalence relation between nowhere vanishing top forms: ω ~ ω' if ω = fω' where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between

- In fact, define an equivalence relation between nowhere vanishing top forms: $\omega \sim \omega'$ if $\omega = f\omega'$ where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when M has no boundary or when dim(M) > 1, i.e.,

- In fact, define an equivalence relation between nowhere vanishing top forms: $\omega \sim \omega'$ if $\omega = f\omega'$ where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when M has no boundary or when dim(M) > 1, i.e., Given [(x_α, U_α)] consider [∑_α ρ_αdx¹_α ∧...].

- In fact, define an equivalence relation between nowhere vanishing top forms: $\omega \sim \omega'$ if $\omega = f\omega'$ where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when *M* has no boundary or when *dim*(*M*) > 1, i.e., Given [(x_α, U_α)] consider [∑_α ρ_αdx¹_α ∧ ...]. Firstly, this map is well-defined.

- In fact, define an equivalence relation between nowhere vanishing top forms: $\omega \sim \omega'$ if $\omega = f\omega'$ where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when *M* has no boundary or when dim(*M*) > 1, i.e., Given [(x_α, U_α)] consider [∑_α ρ_αdx_α¹ ∧ ...]. Firstly, this map is well-defined. Secondly, it is onto (why?)
- In fact, define an equivalence relation between nowhere vanishing top forms: ω ~ ω' if ω = fω' where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when *M* has no boundary or when *dim*(*M*) > 1, i.e., Given [(*x*_α, *U*_α)] consider [∑_α ρ_α*dx*¹_α ∧ ...]. Firstly, this map is well-defined. Secondly, it is onto (why?) Thirdly, it is 1 − 1:

- In fact, define an equivalence relation between nowhere vanishing top forms: $\omega \sim \omega'$ if $\omega = f\omega'$ where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when *M* has no boundary or when *dim*(*M*) > 1, i.e., Given [(*x*_α, *U*_α)] consider [∑_α ρ_α*dx*¹_α ∧...]. Firstly, this map is well-defined. Secondly, it is onto (why?) Thirdly, it is 1 − 1: If ∑_{α'} ρ_α*dx*¹_{α'}∧... > 0,

- In fact, define an equivalence relation between nowhere vanishing top forms: $\omega \sim \omega'$ if $\omega = f\omega'$ where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when *M* has no boundary or when *dim*(*M*) > 1, i.e., Given [(*x*_α, *U*_α)] consider [∑_α ρ_α*dx*¹_α ∧...]. Firstly, this map is well-defined. Secondly, it is onto (why?) Thirdly, it is 1 − 1: If ∑_{α'} ρ_α*dx*¹_{α'}∧... > 0, and if these two

atlases are not compatible then

- In fact, define an equivalence relation between nowhere vanishing top forms: $\omega \sim \omega'$ if $\omega = f\omega'$ where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when *M* has no boundary or when *dim*(*M*) > 1, i.e., Given [(*x*_α, *U*_α)] consider [∑_α ρ_α*dx*¹_α ∧...]. Firstly, this map is well-defined. Secondly, it is onto (why?) Thirdly, it is 1 − 1: If ∑_α ρ_α*dx*¹_α∧... > 0, and if these two atlases are not compatible then det(∂*x*ⁱ_α) < 0 for some α, β' throughout *U*_α ∩ *U*_{β'} (why?).

- In fact, define an equivalence relation between nowhere vanishing top forms: $\omega \sim \omega'$ if $\omega = f\omega'$ where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when *M* has no boundary or when dim(*M*) > 1, i.e., Given [(x_α, U_α)] consider [∑_α ρ_αdx¹_α ∧...]. Firstly, this map is well-defined. Secondly, it is onto (why?) Thirdly, it is 1 1: If ∑_{α'} ρ_αdx¹_α∧... > 0, and if these two atlases are not compatible then det(∂xⁱ_α) < 0 for some α, β' throughout U_α ∩ U_{β'} (why?). This means that the above ratio must be negative in this region (why?)

- In fact, define an equivalence relation between nowhere vanishing top forms: ω ~ ω' if ω = fω' where f > 0. Then if M is connected we have exactly two equivalence classes (why?)
- The above correspondence gives a bijection between the two sets of equivalence classes when M has no boundary or when dim(M) > 1, i.e., Given $[(x_{\alpha}, U_{\alpha})]$ consider $[\sum_{\alpha} \rho_{\alpha} dx_{\alpha}^{1} \wedge \ldots]$. Firstly, this map is well-defined. Secondly, it is onto (why?) Thirdly, it is 1 1: If $\frac{\sum_{\alpha} \rho_{\alpha} dx_{\alpha}^{1} \wedge \ldots}{\sum_{\alpha'} \rho'_{\alpha} dy_{\alpha'}^{1} \wedge \ldots} > 0$, and if these two atlases are not compatible then $det(\frac{\partial x_{\alpha}^{i}}{\partial y_{\beta'}^{j}}) < 0$ for some α, β' throughout $U_{\alpha} \cap U_{\beta'}$ (why?). This means that the above ratio must be negative in this region (why?) Thus we have a contradiction.

æ

聞 と く き と く き と

• The above correspondence means that

• The above correspondence means that we have exactly two equivalence classes for orientation when

• The above correspondence means that we have exactly two equivalence classes for orientation when $\partial M = \phi$ or dim(M) > 1.

• The above correspondence means that we have exactly two equivalence classes for orientation when $\partial M = \phi$ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented"

 The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case since we have defined the boundary chart to have

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case since we have defined the boundary chart to have positive last coordinate,

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case since we have defined the boundary chart to have positive last coordinate, our definition of orientation is not a nice one.

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case since we have defined the boundary chart to have positive last coordinate, our definition of orientation is not a nice one. To avoid this problem,

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case since we have defined the boundary chart to have positive last coordinate, our definition of orientation is not a nice one. To avoid this problem, one *defines* orientation of manifolds using the existence of nowhere vanishing top forms.

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case since we have defined the boundary chart to have positive last coordinate, our definition of orientation is not a nice one. To avoid this problem, one *defines* orientation of manifolds using the existence of nowhere vanishing top forms. Then every orientable manifold (with or without boundary) has exactly two orientation classes.

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case since we have defined the boundary chart to have positive last coordinate, our definition of orientation is not a nice one. To avoid this problem, one *defines* orientation of manifolds using the existence of nowhere vanishing top forms. Then every orientable manifold (with or without boundary) has exactly two orientation classes. When $\partial M = \phi$ or dim(M) > 1,

- The above correspondence means that we have exactly two equivalence classes for orientation when ∂M = φ or dim(M) > 1. Often, one arbitrarily designates one class as "positively oriented" and the other as negatively oriented.
- Unfortunately, in this case since we have defined the boundary chart to have positive last coordinate, our definition of orientation is not a nice one. To avoid this problem, one *defines* orientation of manifolds using the existence of nowhere vanishing top forms. Then every orientable manifold (with or without boundary) has exactly two orientation classes. When $\partial M = \phi$ or dim(M) > 1, this corresponds to orienting using coordinate charts.

• \mathbb{R}^n is orientable.

æ

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold $D \subset M$ is orientable if M is so:

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M,

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i*ω is one on D.

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i*ω is one on D.
- If *M*, *N* are orientable,

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is $M \times N$ with the

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i*ω is one on D.
- If *M*, *N* are orientable, then so is *M* × *N* with the "product orientation":

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If *M*, *N* are orientable, then so is *M* × *N* with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If *M*, *N* are orientable, then so is *M* × *N* with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose $F : M \to N$ (where M, N are connected with dim > 0) is a smooth map

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is $M \times N$ with the "product orientation": Take $\pi_1^* \omega_1 \wedge \pi_2^* \omega_2$ as the orientation form.
- Suppose $F : M \to N$ (where M, N are connected with dim > 0) is a smooth map such that F_* is invertible at all points.

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is $M \times N$ with the "product orientation": Take $\pi_1^* \omega_1 \wedge \pi_2^* \omega_2$ as the orientation form.
- Suppose F : M → N (where M, N are connected with dim > 0) is a smooth map such that F_{*} is invertible at all points. If (F_{*})_p is orientation-preserving at all points,

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is M × N with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose $F : M \to N$ (where M, N are connected with dim > 0) is a smooth map such that F_* is invertible at all points. If $(F_*)_p$ is orientation-preserving at all points, then F is said to be orientation-preserving.

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is M × N with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose F : M → N (where M, N are connected with dim > 0) is a smooth map such that F_{*} is invertible at all points. If (F_{*})_p is orientation-preserving at all points, then F is said to be orientation-preserving. Otherwise it is said to be orientation-reversing.

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is M × N with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose F : M → N (where M, N are connected with dim > 0) is a smooth map such that F_{*} is invertible at all points. If (F_{*})_p is orientation-preserving at all points, then F is said to be orientation-preserving. Otherwise it is said to be orientation-reversing. Given an orientation [ω] on N,
- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is M × N with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose $F: M \to N$ (where M, N are connected with dim > 0) is a smooth map such that F_* is invertible at all points. If $(F_*)_p$ is orientation-preserving at all points, then F is said to be orientation-preserving. Otherwise it is said to be orientation-reversing. Given an orientation $[\omega]$ on N, there is a unique orientation (

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is M × N with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose F : M → N (where M, N are connected with dim > 0) is a smooth map such that F_{*} is invertible at all points. If (F_{*})_p is orientation-preserving at all points, then F is said to be orientation-preserving. Otherwise it is said to be orientation-reversing. Given an orientation [ω] on N, there is a unique orientation (called the pullback orientation)

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is M × N with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose F : M → N (where M, N are connected with dim > 0) is a smooth map such that F_{*} is invertible at all points. If (F_{*})_p is orientation-preserving at all points, then F is said to be orientation-preserving. Otherwise it is said to be orientation-reversing. Given an orientation [ω] on N, there is a unique orientation (called the pullback orientation) such that F is orientation-preserving:

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is M × N with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose F : M → N (where M, N are connected with dim > 0) is a smooth map such that F_{*} is invertible at all points. If (F_{*})_p is orientation-preserving at all points, then F is said to be orientation-preserving. Otherwise it is said to be orientation-reversing. Given an orientation [ω] on N, there is a unique orientation (called the pullback orientation) such that F is orientation-preserving: [F^{*}ω] does the job (why?).

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i^{*}ω is one on D.
- If M, N are orientable, then so is M × N with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose F : M → N (where M, N are connected with dim > 0) is a smooth map such that F_{*} is invertible at all points. If (F_{*})_p is orientation-preserving at all points, then F is said to be orientation-preserving. Otherwise it is said to be orientation-reversing. Given an orientation [ω] on N, there is a unique orientation (called the pullback orientation) such that F is orientation-preserving: [F^{*}ω] does the job (why?). If [η] is any other such orientation,

- \mathbb{R}^n is orientable.
- A codimension-0 submanifold D ⊂ M is orientable if M is so: Suppose ω is an orientation form on M, then i*ω is one on D.
- If *M*, *N* are orientable, then so is *M* × *N* with the "product orientation": Take π₁^{*}ω₁ ∧ π₂^{*}ω₂ as the orientation form.
- Suppose F : M → N (where M, N are connected with dim > 0) is a smooth map such that F_{*} is invertible at all points. If (F_{*})_p is orientation-preserving at all points, then F is said to be orientation-preserving. Otherwise it is said to be orientation-reversing. Given an orientation [ω] on N, there is a unique orientation (called the pullback orientation) such that F is orientation-preserving: [F^{*}ω] does the job (why?). If [η] is any other such orientation, then

 $\omega(F_*e_1,F_*e_2,\ldots)/\eta(e_1,\ldots)>0$ (why?). Thus $[\eta]=[F^*\omega].$

• Hypersurfaces in *M*:

 Hypersurfaces in M: Suppose (M, [ω]) is an oriented smooth manifold with or without boundary, Hypersurfaces in M: Suppose (M, [ω]) is an oriented smooth manifold with or without boundary, and S ⊂ M is a smooth hypersurface (without boundary that does not intersect ∂M). Hypersurfaces in M: Suppose (M, [ω]) is an oriented smooth manifold with or without boundary, and S ⊂ M is a smooth hypersurface (without boundary that does not intersect ∂M). Suppose N is a section of

Hypersurfaces in M: Suppose (M, [ω]) is an oriented smooth manifold with or without boundary, and S ⊂ M is a smooth hypersurface (without boundary that does not intersect ∂M). Suppose N is a section of TM restricted to S such that

Hypersurfaces in M: Suppose (M, [ω]) is an oriented smooth manifold with or without boundary, and S ⊂ M is a smooth hypersurface (without boundary that does not intersect ∂M). Suppose N is a section of TM restricted to S such that N is nowhere tangent to S.

Hypersurfaces in M: Suppose (M, [ω]) is an oriented smooth manifold with or without boundary, and S ⊂ M is a smooth hypersurface (without boundary that does not intersect ∂M). Suppose N is a section of TM restricted to S such that N is nowhere tangent to S. Then S is orientable with

• Hypersurfaces in M: Suppose $(M, [\omega])$ is an oriented smooth manifold with or without boundary, and $S \subset M$ is a smooth hypersurface (without boundary that does not intersect ∂M). Suppose \vec{N} is a section of TM restricted to S such that \vec{N} is nowhere tangent to S. Then S is orientable with the orientation given by the form $(e_1, \ldots, e_{n-1}) \rightarrow \omega(\vec{N}, e_1, \ldots)$ (

• Hypersurfaces in M: Suppose $(M, [\omega])$ is an oriented smooth manifold with or without boundary, and $S \subset M$ is a smooth hypersurface (without boundary that does not intersect ∂M). Suppose \vec{N} is a section of TM restricted to S such that \vec{N} is nowhere tangent to S. Then S is orientable with the orientation given by the form $(e_1, \ldots, e_{n-1}) \rightarrow \omega(\vec{N}, e_1, \ldots)$ (Indeed, $\vec{N}, e_1 \ldots$ are linearly independent and hence • Hypersurfaces in M: Suppose $(M, [\omega])$ is an oriented smooth manifold with or without boundary, and $S \subset M$ is a smooth hypersurface (without boundary that does not intersect ∂M). Suppose \vec{N} is a section of TM restricted to S such that \vec{N} is nowhere tangent to S. Then S is orientable with the orientation given by the form $(e_1, \ldots, e_{n-1}) \rightarrow \omega(\vec{N}, e_1, \ldots)$ (Indeed, $\vec{N}, e_1 \ldots$ are linearly independent and hence $\omega(\vec{N}, \ldots) \neq 0$.) Hypersurfaces in M: Suppose (M, [ω]) is an oriented smooth manifold with or without boundary, and S ⊂ M is a smooth hypersurface (without boundary that does not intersect ∂M). Suppose N is a section of TM restricted to S such that N is nowhere tangent to S. Then S is orientable with the orientation given by the form (e₁,..., e_{n-1}) → ω(N, e₁,...) (Indeed, N, e₁... are linearly independent and hence ω(N,...) ≠ 0.) For instance, Sⁿ can be oriented this way.