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@ Dimension of tangent spaces.
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@ Tangent spaces on manifolds. Pushforwards.
@ Dimension of tangent spaces.

@ Coordinate bases and pushforwards in terms of coordinates.
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around
pE M.
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@ Suppose (U, x), (V,X) are two coordinate charts around
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = via‘?(,
and v = \71'8‘??1-.

Tangent spaces 3/11



Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = v/
e)

%l

a -
ox!

and v = /-2 How are the v/ and ¥ related?
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = v/ 0

Ox'

and v=1i/ 881 How are the v/ and ¥ related?
_ %l
o Note that v/ = v(Z) = v L
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = via‘?(,
and v =¥ 881 How are the v/ and ¥ related?

— o
o Note that v/ = v(Z) = v L

e Example:
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = via‘?(,
e)

and v = vf8 =7 How are the vl and ¥/ related?

o Note that v/ = v(Z) = v gf,

e Example: Consider the polar coordinates (r,#) and the
Cartesian coordinates (x,y).
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = Via?(;

and v =/ 881 How are the v/ and i# related?
o Note that vi = V(&) = v/ gxll_
X

e Example: Consider the polar coordinates (r,#) and the
Cartesian coordinates (x,y). What is the vector % + 2% in
terms of
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = Via?(;

and v =/ 881 How are the v/ and i# related?
o Note that vi = V(&) = v/ gxll_
X

e Example: Consider the polar coordinates (r,#) and the
Cartesian coordinates (x,y). What is the vector 38 +25; g

termsoff:%andf:%? It is 2 /+ J+2a l+2891
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = via‘?(,
and v = 881 How are the v/ and i related?
_ )]
o Note that v/ = v(Z) = v L

e Example: Consider the polar coordinates (r,#) and the
Cartesian coordinates (x,y). What is the vector 38 +25; g
termsoff:% andf:%? It is 2 /+ J+2a l+2891

e Example (Caution!):
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = via‘?(,
and v =¥ 881 How are the v/ and ¥ related?
(Y L i 0%
o Note that v/ = v(¥)=v'g5

@ Example: Consider the polar coordinates (r, ) and the
Cartesian coordinates (x,y). What is the vector 3 + 269 in
termsoff— andJ—87It|saxl+arj+2al+2891

o Example (Cautlon!):Let f=x,y=y+x3 Let p=(1,0)in
(x,y) coordinates.
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = via‘?(,
and v = 881 How are the v/ and i related?
_ )]
o Note that v/ = v(Z) = v L

e Example: Consider the polar coordinates (r,#) and the
Cartesian coordinates (x,y). What is the vector 38 +25; g
termsoff:% andf:%? It is 2 /+ J+2a l+2891

e Example (Caution!):Let X = x, y = y+x3. Let p=(1,0) in
(x,y) coordinates. Is %]p = %\p?
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Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = v/ 0

Ox'

and v =/ 881 How are the v/ and i# related?
o Note that vi = V(&) = v/ gxll_
X

e Example: Consider the polar coordinates (r,#) and the
Cartesian coordinates (x,y). What is the vector 38 +25; g
c_ 0 c_ 0 : Ox
termsofl——andj——? It is 2 /+ J+2 l+2891
:y+x3 Let p=(1,0) in

'g77 0% 0 , 9y O
%l = 9x 9% T ax oy Which

e Example (Caution!): Let X =
(x,y) coordinates. Is - ]p =

at pis

Tangent spaces 3/11



Change of coordinates

@ Suppose (U, x), (V,X) are two coordinate charts around

p € M. Suppose v € T,M. So (abusing notation) v = v/ 0

Ox'

and v =/ 881 How are the v/ and i# related?
o Note that vi = V(&) = v/ gxll_
X

e Example: Consider the polar coordinates (r,#) and the
Cartesian coordinates (x,y). What is the vector 38 +25; g
c_ 0 c_ 0 : Ox
termsofl——andj——? It is 2 /+ J+2 l+2891
:y+x3 Let p=(1,0) in

'g77 0% 0 , 9y O
%l = 9x 9% T ax oy Which

e Example (Caution!): Let X =
(x,y) coordinates. Is - ]p =

atpis%+33%.
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Example: Tangent space of S”
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth.
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.

@ In coordinates:
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.

@ In coordinates: Consider the stereographic charts Ux.
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Example: Tangent space of S”

@ Recall that i : S” — R™*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.

@ In coordinates: Consider the stereographic charts Uy. For
instance,
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.

@ In coordinates: Consider the stereographic charts Uy. For

. . 1 _ Xl . X" O 1

instance, on Uy, i(z" = =g, 2" = =ger) = (X7 =
. 2

2z |2 n+1 _ M .

1+zj(zj)z,x e, XM = Zj(zj)zﬂ). In these coordinates,
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.

@ In coordinates: Consider the stereographic charts Uy. For

. . 1 _ Xl . X" O 1

instance, on Uy, i(z" = =g, 2" = =ger) = (X7 =
. 2

2z |2 n+1 _ M .

1+zj(zj)z,x e, XM = Zj(zj)zﬂ). In these coordinates,

Lo 00 0
*0zI T 0z OxJ "
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.

@ In coordinates: Consider the stereographic charts Uy. For

. . 1 _ Xl . X" O 1

instance, on Uy, i(z" = =g, 2" = =ger) = (X7 =
. 2

2z |2 n+1 _ M .

1+zj(zj)z,x e, XM = Zj(zj)zﬂ). In these coordinates,
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It can be easily seen that
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.

@ In coordinates: Consider the stereographic charts Uy. For

. . 1 _ Xl . X" O 1

instance, on Uy, i(z" = =g, 2" = =ger) = (X7 =
. 2

2z |2 n+1 _ M .

1+zj(zj)z,x e, XM = Zj(zj)zﬂ). In these coordinates,

Lo 00 0
*0zI T 0z OxJ "

It can be easily seen that i, is 1 — 1 and that
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Example: Tangent space of S”

@ Recall that i : S” — R"*1 is smooth. Thus
i : TpS" — T,R™ is a linear map.

@ In coordinates: Consider the stereographic charts Uy. For

. . 1 _ Xl . X" O 1

instance, on Uy, i(z" = =g, 2" = =ger) = (X7 =
. 2

2z |2 n+1 _ M .

1+zj(zj)z,x e, XM = Zj(zj)zﬂ). In these coordinates,

P oxi O . ..
lsgr = 5,50 It can be easily seen that i, is 1 — 1 and that

its image is precisely the usual tangent plane at p.
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Another definition of the tangent space (a physicist's

definition)
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Another definition of the tangent space (a physicist's

definition)

@ Let M be a manifold (with or without boundary)
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@ Let M be a manifold (with or without boundary)

o Consider the set S of all the coordinate charts (U, x)
containing p.
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containing p.
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definition)

@ Let M be a manifold (with or without boundary)

o Consider the set S of all the coordinate charts (U, x)
containing p.

@ For every (U,x) € S, consider the vector space Vi, = R”,
i.e., consider the disjoint union of R"” over U, x.

@ Define a relation ~ on this disjoint union as
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Another definition of the tangent space (a physicist's

definition)

@ Let M be a manifold (with or without boundary)

o Consider the set S of all the coordinate charts (U, x)
containing p.

@ For every (U,x) € S, consider the vector space Vi, = R”,
i.e., consider the disjoint union of R"” over U, x.

@ Define a relation ~ on this disjoint union as

ve Vyx~we Vy, ifv = ng—;j(p).
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Another definition of the tangent space (a physicist's

definition)

Let M be a manifold (with or without boundary)

Consider the set S of all the coordinate charts (U, x)
containing p.

For every (U, x) € S, consider the vector space Vi, = R”,
i.e., consider the disjoint union of R"” over U, x.

Define a relation ~ on this disjoint union as
veE Vyx~we Vy, if v/ —wfax (p).

@ This relation is an equivalence relatlon (why?)
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containing p.
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o Consider the set S of all the coordinate charts (U, x)
containing p.
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Another definition of the tangent space (a physicist's

definition)

@ Let M be a manifold (with or without boundary)

o Consider the set S of all the coordinate charts (U, x)
containing p.

@ For every (U,x) € S, consider the vector space Vi, = R”,
i.e., consider the disjoint union of R"” over U, x.

@ Define a relation ~ on this disjoint union as
ve Vyx~we Vy, ifv = ng—;j(p).

@ This relation is an equivalence relation (why?) The set of
equivalence classes is defined to be T,M. It is a vector space
(how?)

@ Suppose F : M — N is a smooth map, define F.([v]) = [DFv].
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Another definition of the tangent space (a physicist's

definition)
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o Consider the set S of all the coordinate charts (U, x)
containing p.

@ For every (U,x) € S, consider the vector space Vi, = R”,
i.e., consider the disjoint union of R"” over U, x.

@ Define a relation ~ on this disjoint union as
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Another definition of the tangent space (a physicist's

definition)

@ Let M be a manifold (with or without boundary)

o Consider the set S of all the coordinate charts (U, x)
containing p.

@ For every (U,x) € S, consider the vector space Vi, = R”,
i.e., consider the disjoint union of R"” over U, x.

@ Define a relation ~ on this disjoint union as
ve Vyx~we Vy, ifv = ng—;j(p).

@ This relation is an equivalence relation (why?) The set of
equivalence classes is defined to be T,M. It is a vector space
(how?)

@ Suppose F : M — N is a smooth map, define F.([v]) = [DFv].

o Consider the (choice-free/canonical) map F : T,M — T,M
given by v — [v/]. This map is a linear isomorphism that
commutes with pushforwards (HW)
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Velocities of paths

@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
is a smooth function v : J — M such that y(tp) = p for some
to € J. (
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Velocities of paths

@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
is a smooth function v : J — M such that y(tp) = p for some
to € J. (Typically, a curve is the image of a path.
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Velocities of paths

@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
is a smooth function v : J — M such that y(tp) = p for some
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Velocities of paths

@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
is a smooth function v : J — M such that y(tp) = p for some
to € J. (Typically, a curve is the image of a path. Warning:
Lee calls paths as curves.)
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@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
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Velocities of paths

@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
is a smooth function v : J — M such that y(tp) = p for some
to € J. (Typically, a curve is the image of a path. Warning:
Lee calls paths as curves.)

@ Note that the T;J = R for every t € J. The velocity of a
smooth path at to is 7/(t0) = (1) (%) € TpM. (
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Velocities of paths

@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
is a smooth function v : J — M such that y(tp) = p for some
to € J. (Typically, a curve is the image of a path. Warning:
Lee calls paths as curves.)

@ Note that the T;J = R for every t € J. The velocity of a
smooth path at tg is 7/(to) = (7)1 (%) € T,M. (One also
denotes it by various other symbols.)
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@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
is a smooth function v : J — M such that y(tp) = p for some
to € J. (Typically, a curve is the image of a path. Warning:
Lee calls paths as curves.)

@ Note that the T;J = R for every t € J. The velocity of a
smooth path at tg is 7/(to) = (7)1 (%) € T,M. (One also
denotes it by various other symbols.)

@ It acts on smooth functions as 7/(to)(f) = (f o v)'(to).
@ Suppose (U,xi) is a coordinate chart around p,
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Velocities of paths

@ Given an interval J C R and a smooth manifold (with or
without boundary) M, a smooth path passing through p € M
is a smooth function v : J — M such that y(tp) = p for some
to € J. (Typically, a curve is the image of a path. Warning:
Lee calls paths as curves.)

@ Note that the T;J = R for every t € J. The velocity of a
smooth path at tg is 7/(to) = (7)1 (%) € T,M. (One also
denotes it by various other symbols.)

@ It acts on smooth functions as 7/(to)(f) = (f o v)'(to).

@ Suppose (U,xi) is a coordinate chart around p,
dy' . dyf
Y (to) = L (t0) 2 ive 7 (0)(F) = 25 (p) %L (t0).
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@ Proposition:
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Velocities of paths

@ Proposition: Every v € T,M is the velocity of some smooth
path in M passing through p.
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Velocities of paths

@ Proposition: Every v € T,M is the velocity of some smooth
path in M passing through p.

@ Proof:
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Velocities of paths

@ Proposition: Every v € T,M is the velocity of some smooth
path in M passing through p.
@ Proof: Choose a chart (U, x) centred at p.

Tangent spaces 7/11



Velocities of paths

@ Proposition: Every v € T,M is the velocity of some smooth
path in M passing through p.

0

@ Proof: Choose a chart (U, x) centred at p. Now v = v/ =%
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Velocities of paths

@ Proposition: Every v € T,M is the velocity of some smooth
path in M passing through p.

a
Oxi*

@ Proof: Choose a chart (U, x) centred at p. Now v = v/
Choose the smooth path v(t) = t(v?,...,v") (abusing
notation). Also
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Velocities of paths

@ Proposition: Every v € T,M is the velocity of some smooth
path in M passing through p.

@ Proof: Choose a chart (U, x) centred at p. Now v = v/ 2.
Choose the smooth path v(t) = t(v?,...,v") (abusing
notation). Also the domain of v depends on whether we are
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dealing with a boundary point or an interior point. Clearly
7(0) = v.
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Equivalence classes of curves

@ Basically, all tangent vectors are velocity vectors of smooth
paths. We can turn this around to define tangent vectors.

o Consider the relation ~ between smooth paths v: J — M
where 0 € J and y(0) = p: 71 ~ 72 if
(f ov1)(0) = (f o 2)(0) for any real-valued smooth function
defined on a neighbourhood of p. This relation is an
equivalence relation (why?).

@ V,M is defined to be the set of equivalence classes. If
F: M — N is a smooth map, then F,[y] = [F o~]. The
velocity of a smooth path ~ is simply [v].

@ Defining a vector space structure isn't easy. The simplest way
is: Consider the map T : V,M — T,M as [y] — +/(0). (Why
is this well-defined?) This map is a bijection (why?) Thus this
canonical map can be used to define the vector space
structure such that it is a linear isomorphism.
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o Recall that if f : R” — R¥ (k < n) is a smooth map such that
Df, has full rank=k, that is, it is surjective whenever
f(a) = 0, then f~1(0) “can be made into” a smooth manifold
(HW 3). By the way, why k < n?

@ What about the image of a smooth map f : R” — R™
(m > n), i.e.,, Df is 1 — 1?7 Even one where Df has full rank
everywhere? One can find a counterexample where f is also
1 — 1 in addition to Df being 1 — 1 everywhere!
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Immersions and submersions

e Definitions: Let M, N be smooth manifolds (with or without
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(which is the same as the rank of [DF], in coordinate charts).
If F has the same rank at every point, then it is said to have
constant rank. If (F.), has full rank, then F is said to have
full rank at p. If (F.), is surjective for all p € M, then F is
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to be an immersion.

e Proposition: If (F,), is surjective, then p has a
neighbourhood U such that F : U — N is a submersion.
Likewise for injectivity at p.

@ Proof: Indeed, choosing coordinates, the smooth
matrix-valued function [DF] has full rank at p iff a minor is
non-zero. That minor will continue to be non-zero in a
neighbourhood. O
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f :R3 — R given by f(x,y, z) = x is a submersion. Likewise
for projections from products of manifolds.

o f:RR? — R3 given by f(x,y) = (x,y,0) is an immersion.
Likewise for inclusions into products of manifolds.

o Let v:J— M be a smooth map. Then v is an immersion iff
v (t) #0 for all t € J.

@ A circle rotated about an axis can be thought of as an
immersion of R? into R3.

@ A 1—1 immersion need not be a homeomorphism to its
image.
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