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Recap

Tangent spaces on manifolds. Pushforwards.

Dimension of tangent spaces.

Coordinate bases and pushforwards in terms of coordinates.
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Change of coordinates

Suppose (U, x), (V , x̃) are two coordinate charts around
p ∈ M. Suppose v ∈ TpM. So (abusing notation) v = v i ∂

∂x i

and v = ṽ j ∂
∂x̃ j

. How are the v i and ṽ j related?

Note that ṽ j = v(x̃ j) = v i ∂x̃
j

∂x i
.

Example: Consider the polar coordinates (r , θ) and the
Cartesian coordinates (x , y). What is the vector ∂

∂r + 2 ∂
∂θ in

terms of î = ∂
∂x and ĵ = ∂

∂y ? It is ∂x
∂r î + ∂y

∂r ĵ + 2∂x∂θ î + 2∂y∂θ ĵ .

Example (Caution!):Let x̃ = x , ỹ = y + x3. Let p = (1, 0) in
(x , y) coordinates. Is ∂

∂x |p = ∂
∂x̃ |p? ∂

∂x = ∂x̃
∂x

∂
∂x̃ + ∂ỹ

∂x
∂
∂ỹ which

at p is ∂
∂x̃ + 3 ∂

∂ỹ .
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Example (Caution!):Let x̃ = x , ỹ = y + x3. Let p = (1, 0) in
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∂x
∂
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Note that ṽ j = v(x̃ j) = v i ∂x̃
j

∂x i
.

Example: Consider the polar coordinates (r , θ) and the
Cartesian coordinates (x , y).

What is the vector ∂
∂r + 2 ∂

∂θ in

terms of î = ∂
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∂r î + ∂y
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∂x
∂
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∂y ? It is ∂x
∂r î + ∂y
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∂x
∂
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∂x and ĵ = ∂
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Example: Tangent space of Sn

Recall that i : Sn → Rn+1 is smooth. Thus
i∗ : TpS

n → TpR
n+1 is a linear map.

In coordinates: Consider the stereographic charts U±. For
instance, on U+, i(z1 = x1

1−xn+1 , . . . , z
n = xn

1−xn+1 ) = (x1 =

2z i

1+
∑

j (z
j )2
, x2, . . . , xn+1 =

∑
j (z

j )2−1∑
j (z

j )2+1
). In these coordinates,

i∗
∂
∂z i

= ∂x j

∂z i
∂
∂x j

. It can be easily seen that i∗ is 1− 1 and that
its image is precisely the usual tangent plane at p.
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In coordinates: Consider the stereographic charts U±. For
instance, on U+, i(z1 = x1

1−xn+1 , . . . , z
n = xn

1−xn+1 ) = (x1 =

2z i
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j (z
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∑
j (z
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Another definition of the tangent space (a physicist’s
definition)

Let M be a manifold (with or without boundary)

Consider the set S of all the coordinate charts (U, x)
containing p.

For every (U, x) ∈ S, consider the vector space VU,x = Rn,
i.e., consider the disjoint union of Rn over U, x .

Define a relation ∼ on this disjoint union as
v ∈ VU,x ∼ w ∈ VW ,y if v i = w j ∂x i

∂y j (p).

This relation is an equivalence relation (why?) The set of
equivalence classes is defined to be ˜TpM. It is a vector space
(how?)

Suppose F : M → N is a smooth map, define F̃∗([v ]) = [DFv ].

Consider the (choice-free/canonical) map F : TpM → ˜TpM
given by v → [v i ]. This map is a linear isomorphism that
commutes with pushforwards (HW)
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Velocities of paths

Given an interval J ⊂ R and a smooth manifold (with or
without boundary) M, a smooth path passing through p ∈ M
is a smooth function γ : J → M such that γ(t0) = p for some
t0 ∈ J. (Typically, a curve is the image of a path. Warning:
Lee calls paths as curves.)

Note that the TtJ = R for every t ∈ J. The velocity of a
smooth path at t0 is γ′(t0) = (γ∗)t0( d

dt ) ∈ TpM. (One also
denotes it by various other symbols.)

It acts on smooth functions as γ′(t0)(f ) = (f ◦ γ)′(t0).

Suppose (U, x i ) is a coordinate chart around p,

γ′(t0) = dγ i

dt (t0) ∂
∂x i

, i.e., γ′(t0)(f ) = ∂f
∂x i

(p)dγ
i

dt (t0).
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Velocities of paths

Proposition: Every v ∈ TpM is the velocity of some smooth
path in M passing through p.

Proof: Choose a chart (U, x) centred at p. Now v = v i ∂
∂x i

.
Choose the smooth path γ(t) = t(v1, . . . , vn) (abusing
notation). Also the domain of γ depends on whether we are
dealing with a boundary point or an interior point. Clearly
γ′(0) = v .

Composition (trivial): Let F : M → N be a smooth map and
γ : J → M be a smooth path. Then the velocity of F ◦ γ at t0
is F∗(γ

′(t0)).

Computing the differential: Suppose F : M → N is smooth
and v ∈ TpM. Then F∗v = (F ◦ γ)′(0) where
γ(0) = p, γ′(0) = v .
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Equivalence classes of curves

Basically, all tangent vectors are velocity vectors of smooth
paths. We can turn this around to define tangent vectors.

Consider the relation ∼ between smooth paths γ : J → M
where 0 ∈ J and γ(0) = p: γ1 ∼ γ2 if
(f ◦ γ1)′(0) = (f ◦ γ2)′(0) for any real-valued smooth function
defined on a neighbourhood of p. This relation is an
equivalence relation (why?).

VpM is defined to be the set of equivalence classes. If
F : M → N is a smooth map, then F∗[γ] = [F ◦ γ]. The
velocity of a smooth path γ is simply [γ].

Defining a vector space structure isn’t easy. The simplest way
is: Consider the map T : VpM → TpM as [γ]→ γ′(0). (Why
is this well-defined?) This map is a bijection (why?) Thus this
canonical map can be used to define the vector space
structure such that it is a linear isomorphism.
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Generalising a HW problem

Recall that if f : Rn → Rk (k < n) is a smooth map such that
Dfa has full rank=k , that is, it is surjective whenever
f (a) = 0, then f −1(0) “can be made into” a smooth manifold
(HW 3). By the way, why k < n?

What about the image of a smooth map f : Rn → Rm

(m > n), i.e., Df is 1− 1? Even one where Df has full rank
everywhere? One can find a counterexample where f is also
1− 1 in addition to Df being 1− 1 everywhere!
(f : (−π, π)→ R2 given by f (t) = (sin(2t), sin(t))).

So if f : M → N (manifolds without boundary) is a smooth
map (n < m), q ∈ N, such that f∗ : TpM → Tf (p)=qN is
surjective whenever f (p) = q, then can f −1(q) be made into
a smooth manifold? Likewise, what about the other case?
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Immersions and submersions

Definitions: Let M,N be smooth manifolds (with or without
boundary) and F : M → N be a smooth map. The rank of F
at p is defined to be the rank of (F∗)p : TpM → TF (p)N
(which is the same as the rank of [DF ]p in coordinate charts).
If F has the same rank at every point, then it is said to have
constant rank. If (F∗)p has full rank, then F is said to have
full rank at p. If (F∗)p is surjective for all p ∈ M, then F is
called a submersion. It is 1− 1 for all p ∈ M, then F is said
to be an immersion.

Proposition: If (F∗)p is surjective, then p has a
neighbourhood U such that F : U → N is a submersion.
Likewise for injectivity at p.

Proof: Indeed, choosing coordinates, the smooth
matrix-valued function [DF ] has full rank at p iff a minor is
non-zero. That minor will continue to be non-zero in a
neighbourhood.
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Examples and non-examples

f : R→ R given by f (x) = x2 is not of constant rank. It is an
immersion (and a submersion) at x = 1 for instance.

f : R3 → R given by f (x , y , z) = x is a submersion. Likewise
for projections from products of manifolds.

f : R2 → R3 given by f (x , y) = (x , y , 0) is an immersion.
Likewise for inclusions into products of manifolds.

Let γ : J → M be a smooth map. Then γ is an immersion iff
γ′(t) 6= 0 for all t ∈ J.

A circle rotated about an axis can be thought of as an
immersion of R2 into R3.

A 1− 1 immersion need not be a homeomorphism to its
image.
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