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Recap

Defined vector bundles and gave examples.

Defined the dual bundle and constructed the cotangent bundle
as a special case.
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Back to vector fields

Recall that the point of defining vector fields/tangent bundle
was to model the flow of fluids along a manifold.

Def: Let M be a smooth manifold with or without boundary.
Let J ⊂ R be an interval containing 0 in its interior. Let X be
a smooth vector field on M. An integral curve for X starting
at p ∈ M is a smooth path γ : J → M such that γ(0) = p
and γ′(t) = X (γ(t)) ∀ t ∈ J.
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Examples

The constant vector field in Rn: Let X = c i ∂
∂x i

on Rn. The
integral curve starting at ~p is ~p + ~ct (why?) Note that if we
fix t, then ~p → ~p + ~ct is a diffeomorphism of Rn!

Rotational vector field in R2: X = (y ,−x). Now
dx
dt = y , dydt = −x . Thus d2x

dt2
= −x , d

2y
dt2

= −y . Hence
x = A cos(t) + B sin(t), y = x ′ = −A sin(t) + B cos(t). At
t = 0, x0 = A, y0 = B. Fixing t,
(x0, y0)→ (x0 cos(t) + y0 sin(t),−x0 sin(t) + y0 cos(t)) is a
diffeo of R2!
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Examples

Incomplete vector field in R2 − {0}: Consider the constant
vector field X = ∂

∂x in R2 − {0}. The integral curve for say
(−1, 0) does not exist at t = 1! Such a vector field (that has
at least one integral curve that does not exist for all time) is
called an incomplete vector field.

A vector field that blows up in finite-time in R2: X = x2 ∂
∂x .

Note that dx
dt = x2, dydt = 0. Hence, x = x0

1−x0t , y = y0. In
other words, it blows up in finite time! (Incomplete vector
field.)

A compactly supported vector field in Rn: Let X be any
smooth vector field. Let ρ be a smooth compactly supported
function. Then ρX is a compactly supported vector field. For
any starting point outside the support, the integral curve is a
constant!
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Existence of integral curves

Theorem: Let X be a smooth vector field on a manifold M
(without boundary). For every p ∈ M, there exists a
neighbourhood Up ⊂ M and εp > 0 such that for every
q ∈ Up, there is a unique smooth integral curve
γ : (−εp, εp)→ M for X starting at q.

This theorem follows almost immediately from the
existence/uniqueness/smooth-dependence-on-initial-
parameters theorem for (time-independent) systems of
ODE.

That theorem is proven by rewriting the system as an integral
equation and using an iterative method and the contraction
mapping principle. For uniqueness and smoothness, one needs
to put in more effort (Gronwall’s inequality).

The εp can be finite and Up need not be all of M.
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New integral curves from old ones

Let γ : J → M be a smooth integral curve. Then γ̃ : J̃ → M
given by γ̃(t) = γ(at) where a ∈ R is an integral curve for aX
starting at p.

γ̃ : J − b → M given by γ̃(t) = γ(t + b) is an integral curve
for X .

Suppose M,N are smooth manifolds, F : M → N is a smooth
map, and X is a smooth vector field on M. Unfortunately,
there need not be a smooth vector field on N that is a
“pushforward” of X (why?) If F is a diffeo, then one can talk
of pushforwards of vector fields. However, if Y is a smooth
vector field on M such that YF (p) = (F∗)p(Xp) for all p ∈ M
(then Y and X are said to be F -related), then whenever γ is
an integral curve for X , F ◦ γ is an integral curve for Y (why?)
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Flows of compactly supported vector fields

Theorem: Every smooth compactly supported vector field X is
complete. In particular, any smooth vector field on a compact
manifold is complete.

Proof: Let p be a starting point. Let T be the supremum of
all ε such that the integral curve exists on (−ε, ε). If T <∞,
then firstly p is within the support of X (why?). Secondly,
consider a sequence tn → T . Then at least one of the
sequences qn = γ(−tn), rn = γ(tn) is within a compact set
(why?). WLOG assume qn does. Hence there is a convergent
subsequence (that we still call qn abusing notation). So
qn → q. Now an integral curve exists with q as starting points
for some time. Hence, there are two integral curves starting at
qn (for some large n). By uniqueness, they coincide. Hence,
the integral curve can be smoothly extended past T . A
contradiction.
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Flows of compactly supported vector fields

Theorem: If X is compactly supported, then θ : R×M given
by θt(p) = γ(t) where γ is the integral curve of X starting
from p (this map is called the time-t flow of X ) is smooth
and a diffeomorphism for each fixed t. Moreover,
θt+s = θt ◦ θs and θ−t = θ−1t . (Such a collection of
diffeomorphisms is a called a one-parameter group.)

Proof: The smoothness follows from
local-smooth-dependence-on-initial-conditions. Now if we
prove that θ−t = θ−1t , then θt is a diffeo. Indeed, θ0 is
identity. If we prove that θt+s = θt ◦ θs , we are done. This
follows from uniqueness (why?)
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An application to diffeomorphisms

Theorem: For every smooth connected manifold M (without
boundary), and points p, q ∈ M, there exists a diffeomorphism
that takes p to q.

Proof: The set of all points that can be obtained from p by
diffeomorphisms of M is non-empty (why?) If we prove that it
is open and closed, we are done (why?)

Openness: Suppose q can be obtained from p by a diffeo. We
shall prove that there exists a diffeo that takes q to any point
nearby but fixes p. Composition will then do the job. Indeed,
take a constant vector field in coordinates and cut it off by a
bump function. The flow of this compactly supported vector
field does the job.

Closedness: Suppose qn → q. There is again a neighbourhood
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