Documentation

Mathlib.Algebra.Order.AbsoluteValue.Equivalence

Equivalence of real-valued absolute values #

Two absolute values v₁, v₂ : AbsoluteValue R ℝ are equivalent if there exists a positive real number c such that v₁ x ^ c = v₂ x for all x : R.

def AbsoluteValue.Equiv {R : Type u_1} [Semiring R] (f g : AbsoluteValue R ) :

Two absolute values f, g on R with values in are equivalent if there exists a positive real constant c such that for all x : R, (f x)^c = g x.

Equations
  • f.Equiv g = ∃ (c : ), 0 < c (fun (x : R) => f x ^ c) = g
Instances For
    theorem AbsoluteValue.equiv_refl {R : Type u_1} [Semiring R] (f : AbsoluteValue R ) :
    f.Equiv f

    Equivalence of absolute values is reflexive.

    theorem AbsoluteValue.equiv_symm {R : Type u_1} [Semiring R] {f g : AbsoluteValue R } (hfg : f.Equiv g) :
    g.Equiv f

    Equivalence of absolute values is symmetric.

    theorem AbsoluteValue.equiv_trans {R : Type u_1} [Semiring R] {f g k : AbsoluteValue R } (hfg : f.Equiv g) (hgk : g.Equiv k) :
    f.Equiv k

    Equivalence of absolute values is transitive.

    @[simp]
    theorem AbsoluteValue.eq_trivial_of_equiv_trivial {R : Type u_1} [Semiring R] [DecidablePred fun (x : R) => x = 0] [NoZeroDivisors R] (f : AbsoluteValue R ) :
    f.Equiv AbsoluteValue.trivial f = AbsoluteValue.trivial

    An absolute value is equivalent to the trivial iff it is trivial itself.

    Equations
    • AbsoluteValue.instSetoidReal = { r := AbsoluteValue.Equiv, iseqv := }