Division polynomials of Weierstrass curves #
This file computes the leading terms of certain polynomials associated to division polynomials of
Weierstrass curves defined in Mathlib.AlgebraicGeometry.EllipticCurve.DivisionPolynomial.Basic.
Mathematical background #
Let W be a Weierstrass curve over a commutative ring R. By strong induction,
preΨₙhas leading coefficientn / 2and degree(n² - 4) / 2ifnis even,preΨₙhas leading coefficientnand degree(n² - 1) / 2ifnis odd,ΨSqₙhas leading coefficientn²and degreen² - 1, andΦₙhas leading coefficient1and degreen².
In particular, when R is an integral domain of characteristic different from n, the univariate
polynomials preΨₙ, ΨSqₙ, and Φₙ all have their expected leading terms.
Main statements #
WeierstrassCurve.natDegree_preΨ_le: the degree bounddofpreΨₙ.WeierstrassCurve.coeff_preΨ: thed-th coefficient ofpreΨₙ.WeierstrassCurve.natDegree_preΨ: the degree ofpreΨₙwhenn ≠ 0.WeierstrassCurve.leadingCoeff_preΨ: the leading coefficient ofpreΨₙwhenn ≠ 0.WeierstrassCurve.natDegree_ΨSq_le: the degree bounddofΨSqₙ.WeierstrassCurve.coeff_ΨSq: thed-th coefficient ofΨSqₙ.WeierstrassCurve.natDegree_ΨSq: the degree ofΨSqₙwhenn ≠ 0.WeierstrassCurve.leadingCoeff_ΨSq: the leading coefficient ofΨSqₙwhenn ≠ 0.WeierstrassCurve.natDegree_Φ_le: the degree bounddofΦₙ.WeierstrassCurve.coeff_Φ: thed-th coefficient ofΦₙ.WeierstrassCurve.natDegree_Φ: the degree ofΦₙwhenn ≠ 0.WeierstrassCurve.leadingCoeff_Φ: the leading coefficient ofΦₙwhenn ≠ 0.
References #
[J Silverman, The Arithmetic of Elliptic Curves][silverman2009]
Tags #
elliptic curve, division polynomial, torsion point
theorem
WeierstrassCurve.natDegree_Ψ₂Sq_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.Ψ₂Sq.natDegree ≤ 3
@[simp]
theorem
WeierstrassCurve.coeff_Ψ₂Sq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.Ψ₂Sq.coeff 3 = 4
theorem
WeierstrassCurve.coeff_Ψ₂Sq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
W.Ψ₂Sq.coeff 3 ≠ 0
@[simp]
theorem
WeierstrassCurve.natDegree_Ψ₂Sq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
W.Ψ₂Sq.natDegree = 3
theorem
WeierstrassCurve.natDegree_Ψ₂Sq_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
0 < W.Ψ₂Sq.natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Ψ₂Sq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
W.Ψ₂Sq.leadingCoeff = 4
theorem
WeierstrassCurve.Ψ₂Sq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 4 ≠ 0)
:
W.Ψ₂Sq ≠ 0
theorem
WeierstrassCurve.natDegree_Ψ₃_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.Ψ₃.natDegree ≤ 4
@[simp]
theorem
WeierstrassCurve.coeff_Ψ₃
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.Ψ₃.coeff 4 = 3
theorem
WeierstrassCurve.coeff_Ψ₃_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
W.Ψ₃.coeff 4 ≠ 0
@[simp]
theorem
WeierstrassCurve.natDegree_Ψ₃
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
W.Ψ₃.natDegree = 4
theorem
WeierstrassCurve.natDegree_Ψ₃_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
0 < W.Ψ₃.natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Ψ₃
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
W.Ψ₃.leadingCoeff = 3
theorem
WeierstrassCurve.Ψ₃_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 3 ≠ 0)
:
W.Ψ₃ ≠ 0
theorem
WeierstrassCurve.natDegree_preΨ₄_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.preΨ₄.natDegree ≤ 6
@[simp]
theorem
WeierstrassCurve.coeff_preΨ₄
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
:
W.preΨ₄.coeff 6 = 2
theorem
WeierstrassCurve.coeff_preΨ₄_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
W.preΨ₄.coeff 6 ≠ 0
@[simp]
theorem
WeierstrassCurve.natDegree_preΨ₄
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
W.preΨ₄.natDegree = 6
theorem
WeierstrassCurve.natDegree_preΨ₄_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
0 < W.preΨ₄.natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ₄
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
W.preΨ₄.leadingCoeff = 2
theorem
WeierstrassCurve.preΨ₄_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(h : 2 ≠ 0)
:
W.preΨ₄ ≠ 0
theorem
WeierstrassCurve.natDegree_preΨ'_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℕ}
(hn : 2 < n)
(h : ↑n ≠ 0)
:
0 < (W.preΨ' n).natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ'
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℕ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.preΨ'_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℕ}
(h : ↑n ≠ 0)
:
W.preΨ' n ≠ 0
theorem
WeierstrassCurve.natDegree_preΨ_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℤ}
(hn : 2 < n.natAbs)
(h : ↑n ≠ 0)
:
0 < (W.preΨ n).natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_preΨ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.preΨ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℤ}
(h : ↑n ≠ 0)
:
W.preΨ n ≠ 0
theorem
WeierstrassCurve.natDegree_ΨSq_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(n : ℤ)
:
@[simp]
theorem
WeierstrassCurve.coeff_ΨSq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
@[simp]
theorem
WeierstrassCurve.natDegree_ΨSq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.natDegree_ΨSq_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(hn : 1 < n.natAbs)
(h : ↑n ≠ 0)
:
0 < (W.ΨSq n).natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_ΨSq
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
theorem
WeierstrassCurve.ΨSq_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[NoZeroDivisors R]
{n : ℤ}
(h : ↑n ≠ 0)
:
W.ΨSq n ≠ 0
theorem
WeierstrassCurve.natDegree_Φ_le
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
(n : ℤ)
:
@[simp]
theorem
WeierstrassCurve.coeff_Φ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
@[simp]
theorem
WeierstrassCurve.natDegree_Φ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
theorem
WeierstrassCurve.natDegree_Φ_pos
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
{n : ℤ}
(hn : n ≠ 0)
:
0 < (W.Φ n).natDegree
@[simp]
theorem
WeierstrassCurve.leadingCoeff_Φ
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
(W.Φ n).leadingCoeff = 1
theorem
WeierstrassCurve.Φ_ne_zero
{R : Type u}
[CommRing R]
(W : WeierstrassCurve R)
[Nontrivial R]
(n : ℤ)
:
W.Φ n ≠ 0