The 1-hypercover of a glue data #
In this file, given D : Scheme.GlueData, we construct a 1-hypercover
D.openHypercover of the scheme D.glued in the big Zariski site.
We use this 1-hypercover in order to define a constructor D.sheafValGluedMk
for sections over D.glued of a sheaf of types over the big Zariski site.
Notes #
This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024.
noncomputable def
AlgebraicGeometry.Scheme.GlueData.oneHypercover
(D : AlgebraicGeometry.Scheme.GlueData)
:
AlgebraicGeometry.Scheme.zariskiTopology.OneHypercover D.glued
The 1-hypercover of D.glued in the big Zariski site that is given by the
open cover D.U from the glue data D.
The "covering of the intersection of two such open subsets" is the trivial
covering given by D.V.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₀
(D : AlgebraicGeometry.Scheme.GlueData)
:
D.oneHypercover.I₀ = D.J
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_f
(D : AlgebraicGeometry.Scheme.GlueData)
(i : D.J)
:
D.oneHypercover.f i = D.ι i
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_I₁
(D : AlgebraicGeometry.Scheme.GlueData)
(x✝ x✝¹ : D.J)
:
D.oneHypercover.I₁ x✝ x✝¹ = PUnit.{u + 1}
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_Y
(D : AlgebraicGeometry.Scheme.GlueData)
(i₁ i₂ : D.J)
(x✝ : PUnit.{u + 1})
:
D.oneHypercover.Y x✝ = D.V (i₁, i₂)
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₁
(D : AlgebraicGeometry.Scheme.GlueData)
(i₁ i₂ : D.J)
(x✝ : PUnit.{u + 1})
:
D.oneHypercover.p₁ x✝ = D.f i₁ i₂
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_X
(D : AlgebraicGeometry.Scheme.GlueData)
(a✝ : D.J)
:
D.oneHypercover.X a✝ = D.U a✝
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.oneHypercover_p₂
(D : AlgebraicGeometry.Scheme.GlueData)
(i₁ i₂ : D.J)
(x✝ : PUnit.{u + 1})
:
D.oneHypercover.p₂ x✝ = CategoryTheory.CategoryStruct.comp (D.t i₁ i₂) (D.f i₂ i₁)
noncomputable def
AlgebraicGeometry.Scheme.GlueData.sheafValGluedMk
(D : AlgebraicGeometry.Scheme.GlueData)
{F : CategoryTheory.Sheaf AlgebraicGeometry.Scheme.zariskiTopology (Type v)}
(s : (j : D.J) → F.val.obj (Opposite.op (D.U j)))
(h :
∀ (i j : D.J),
F.val.map (D.f i j).op (s i) = F.val.map (CategoryTheory.CategoryStruct.comp (D.f j i).op (D.t i j).op) (s j))
:
F.val.obj (Opposite.op D.glued)
Constructor for sections over D.glued of a sheaf of types on the big Zariski site.
Equations
- D.sheafValGluedMk s h = (CategoryTheory.Limits.Multifork.IsLimit.sectionsEquiv (D.oneHypercover.isLimitMultifork F)) { val := s, property := ⋯ }
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.GlueData.sheafValGluedMk_val
(D : AlgebraicGeometry.Scheme.GlueData)
{F : CategoryTheory.Sheaf AlgebraicGeometry.Scheme.zariskiTopology (Type v)}
(s : (j : D.J) → F.val.obj (Opposite.op (D.U j)))
(h :
∀ (i j : D.J),
F.val.map (D.f i j).op (s i) = F.val.map (CategoryTheory.CategoryStruct.comp (D.f j i).op (D.t i j).op) (s j))
(j : D.J)
:
F.val.map (D.ι j).op (D.sheafValGluedMk s h) = s j