Typeclasses for S-schemes and S-morphisms #
We define these as thin wrappers around CategoryTheory/Comma/OverClass.
Main definition #
AlgebraicGeometry.Scheme.Over:X.Over SequipsXwith aS-scheme structure.X ↘ S : X ⟶ Sis the structure morphism.AlgebraicGeometry.Scheme.Hom.IsOver:f.IsOver Sasserts thatfis aS-morphism.
@[reducible, inline]
X.Over S is the typeclass containing the data of a structure morphism X ↘ S : X ⟶ S.
Equations
- X.Over S = CategoryTheory.OverClass X S
Instances For
@[reducible, inline]
abbrev
AlgebraicGeometry.Scheme.CanonicallyOver
{X : AlgebraicGeometry.Scheme}
(S : AlgebraicGeometry.Scheme)
:
Type u
X.CanonicallyOver S is the typeclass containing the data of a structure morphism X ↘ S : X ⟶ S,
and that S is (uniquely) inferable from the structure of X.
Instances For
@[reducible, inline]
abbrev
AlgebraicGeometry.Scheme.Hom.IsOver
{X Y : AlgebraicGeometry.Scheme}
(f : X.Hom Y)
(S : AlgebraicGeometry.Scheme)
[X.Over S]
[Y.Over S]
:
Given X.Over S and Y.Over S and f : X ⟶ Y,
f.IsOver S is the typeclass asserting f commutes with the structure morphisms.
Equations
- f.IsOver S = CategoryTheory.HomIsOver f S
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.Hom.isOver_iff
{X Y : AlgebraicGeometry.Scheme}
(S : AlgebraicGeometry.Scheme)
[X.Over S]
[Y.Over S]
{f : X ⟶ Y}
:
AlgebraicGeometry.Scheme.Hom.IsOver f S ↔ CategoryTheory.CategoryStruct.comp f (Y ↘ S) = X ↘ S
Also note the existence of CategoryTheory.IsOverTower X Y S.
@[reducible, inline]
Given X.Over S, this is the bundled object of Over S.
Equations
- X.asOver S = CategoryTheory.OverClass.asOver X S
Instances For
@[reducible, inline]
abbrev
AlgebraicGeometry.Scheme.Hom.asOver
{X Y : AlgebraicGeometry.Scheme}
(f : X.Hom Y)
(S : AlgebraicGeometry.Scheme)
[X.Over S]
[Y.Over S]
[f.IsOver S]
:
Given a morphism X ⟶ Y with f.IsOver S, this is the bundled morphism in Over S.
Equations
- f.asOver S = CategoryTheory.OverClass.asOverHom S f