Documentation

Mathlib.CategoryTheory.Generator.Presheaf

Generators in the category of presheaves #

In this file, we show that if A is a category with zero morphisms that has a separator (and suitable coproducts), then the category of presheaves Cᵒᵖ ⥤ A also has a separator.

Given X : C and M : A, this is the presheaf Cᵒᵖ ⥤ A which sends Y : Cᵒᵖ to the coproduct of copies of M indexed by Y.unop ⟶ X.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Presheaf.freeYoneda_obj {C : Type u} [CategoryTheory.Category.{v, u} C] {A : Type u'} [CategoryTheory.Category.{v', u'} A] [CategoryTheory.Limits.HasCoproducts A] (X : C) (M : A) (Y : Cᵒᵖ) :
    (CategoryTheory.Presheaf.freeYoneda X M).obj Y = fun (i : (CategoryTheory.yoneda.obj X).obj Y) => M
    @[simp]
    theorem CategoryTheory.Presheaf.freeYoneda_map {C : Type u} [CategoryTheory.Category.{v, u} C] {A : Type u'} [CategoryTheory.Category.{v', u'} A] [CategoryTheory.Limits.HasCoproducts A] (X : C) (M : A) {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) :
    (CategoryTheory.Presheaf.freeYoneda X M).map f = CategoryTheory.Limits.Sigma.map' ((CategoryTheory.yoneda.obj X).map f) fun (x : (CategoryTheory.yoneda.obj X).obj X✝) => CategoryTheory.CategoryStruct.id M

    The bijection (Presheaf.freeYoneda X M ⟶ F) ≃ (M ⟶ F.obj (op X)).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.Presheaf.freeYonedaHomEquiv_comp {C : Type u} [CategoryTheory.Category.{v, u} C] {A : Type u'} [CategoryTheory.Category.{v', u'} A] [CategoryTheory.Limits.HasCoproducts A] {X : C} {M : A} {F G : CategoryTheory.Functor Cᵒᵖ A} (α : CategoryTheory.Presheaf.freeYoneda X M F) (f : F G) :
      CategoryTheory.Presheaf.freeYonedaHomEquiv (CategoryTheory.CategoryStruct.comp α f) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Presheaf.freeYonedaHomEquiv α) (f.app (Opposite.op X))
      theorem CategoryTheory.Presheaf.freeYonedaHomEquiv_symm_comp {C : Type u} [CategoryTheory.Category.{v, u} C] {A : Type u'} [CategoryTheory.Category.{v', u'} A] [CategoryTheory.Limits.HasCoproducts A] {X : C} {M : A} {F G : CategoryTheory.Functor Cᵒᵖ A} (α : M F.obj (Opposite.op X)) (f : F G) :
      CategoryTheory.CategoryStruct.comp (CategoryTheory.Presheaf.freeYonedaHomEquiv.symm α) f = CategoryTheory.Presheaf.freeYonedaHomEquiv.symm (CategoryTheory.CategoryStruct.comp α (f.app (Opposite.op X)))