Factorization of Binomial Coefficients #
This file contains a few results on the multiplicity of prime factors within certain size bounds in binomial coefficients. These include:
Nat.factorization_choose_le_log: a logarithmic upper bound on the multiplicity of a prime in a binomial coefficient.Nat.factorization_choose_le_one: Primes abovesqrt nappear at most once in the factorization ofnchoosek.Nat.factorization_centralBinom_of_two_mul_self_lt_three_mul: Primes from2 * n / 3tondo not appear in the factorization of thenth central binomial coefficient.Nat.factorization_choose_eq_zero_of_lt: Primes greater thanndo not appear in the factorization ofnchoosek.
These results appear in the Erdős proof of Bertrand's postulate.
A logarithmic upper bound on the multiplicity of a prime in a binomial coefficient.
theorem
Nat.factorization_factorial_eq_zero_of_lt
{p n : ℕ}
(h : n < p)
:
n.factorial.factorization p = 0
theorem
Nat.factorization_choose_eq_zero_of_lt
{p n k : ℕ}
(h : n < p)
:
(n.choose k).factorization p = 0
theorem
Nat.le_two_mul_of_factorization_centralBinom_pos
{p n : ℕ}
(h_pos : 0 < n.centralBinom.factorization p)
:
Contrapositive form of Nat.factorization_centralBinom_eq_zero_of_two_mul_lt
theorem
Nat.prod_pow_factorization_choose
(n k : ℕ)
(hkn : k ≤ n)
:
∏ p ∈ Finset.range (n + 1), p ^ (n.choose k).factorization p = n.choose k
A binomial coefficient is the product of its prime factors, which are at most n.
theorem
Nat.prod_pow_factorization_centralBinom
(n : ℕ)
:
∏ p ∈ Finset.range (2 * n + 1), p ^ n.centralBinom.factorization p = n.centralBinom
The nth central binomial coefficient is the product of its prime factors, which are
at most 2n.