Main definitions and results #
In a field extension K/k
finGaloisGroup L: The (finite) Galois groupGal(L/k)associated to aL : FiniteGaloisIntermediateField k KL.finGaloisGroupMap: ForFiniteGaloisIntermediateFieldsL₁andL₂withL₂ ≤ L₁giving the restriction ofGal(L₁/k)toGal(L₂/k)finGaloisGroupFunctor: MappingFiniteGaloisIntermediateFieldordered by inverse inclusion to its corresponding Galois Group asFiniteGrp.
The (finite) Galois group Gal(L / k) associated to a
L : FiniteGaloisIntermediateField k K L.
Equations
- L.finGaloisGroup = FiniteGrp.of (↥L.toIntermediateField ≃ₐ[k] ↥L.toIntermediateField)
Instances For
For FiniteGaloisIntermediateField s L₁ and L₂ with L₂ ≤ L₁
the restriction homomorphism from Gal(L₁/k) to Gal(L₂/k)
Equations
- finGaloisGroupMap le = FiniteGrp.ofHom (AlgEquiv.restrictNormalHom ↥(Opposite.unop L₂).toIntermediateField)
Instances For
The functor from FiniteGaloisIntermediateField (ordered by reverse inclusion) to FiniteGrp,
mapping each intermediate field K/L/k to Gal (L/k).
Equations
- One or more equations did not get rendered due to their size.