Some lemmas pertaining to the action of ConjAct (Perm α) on Perm α #
We prove some lemmas related to the action of ConjAct (Perm α) on Perm α:
Let α be a decidable fintype.
conj_support_eqrelates the support ofk • gwith that ofgcycleFactorsFinset_conj_eq,mem_cycleFactorsFinset_conj'andcycleFactorsFinset_conjrelate the set of cycles ofg,g.cycleFactorsFinset, with that fork • g
theorem
Equiv.Perm.mem_conj_support
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(k : ConjAct (Equiv.Perm α))
(g : Equiv.Perm α)
(a : α)
:
a : α belongs to the support of k • g iff
k⁻¹ * a belongs to the support of g
theorem
Equiv.Perm.cycleFactorsFinset_conj
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(g k : Equiv.Perm α)
:
(ConjAct.toConjAct k • g).cycleFactorsFinset = Finset.map (MulAut.conj k).toEmbedding g.cycleFactorsFinset
@[simp]
theorem
Equiv.Perm.mem_cycleFactorsFinset_conj'
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(k : ConjAct (Equiv.Perm α))
(g c : Equiv.Perm α)
:
A permutation c is a cycle of g iff k • c is a cycle of k • g
theorem
Equiv.Perm.cycleFactorsFinset_conj_eq
{α : Type u_1}
[DecidableEq α]
[Fintype α]
(k : ConjAct (Equiv.Perm α))
(g : Equiv.Perm α)
: