Documentation

Mathlib.GroupTheory.SpecificGroups.ZGroup

Z-Groups #

A Z-group is a group whose Sylow subgroups are all cyclic.

Main definitions #

Main results #

TODO: Show that if G is a Z-group with commutator subgroup G', then G = G' ⋊ G/G' where G' and G/G' are cyclic of coprime orders.

class IsZGroup (G : Type u_1) [Group G] :

A Z-group is a group whose Sylow subgroups are all cyclic.

Instances
    theorem isZGroup_iff (G : Type u_1) [Group G] :
    IsZGroup G ∀ (p : ), Nat.Prime p∀ (P : Sylow p G), IsCyclic P
    theorem IsPGroup.isCyclic_of_isZGroup {G : Type u_1} [Group G] [IsZGroup G] {p : } [Fact (Nat.Prime p)] {P : Subgroup G} (hP : IsPGroup p P) :
    theorem IsZGroup.of_injective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G →* G'} [hG' : IsZGroup G'] (hf : Function.Injective f) :
    theorem IsZGroup.of_surjective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G →* G'} [Finite G] [hG : IsZGroup G] (hf : Function.Surjective f) :
    instance IsZGroup.instQuotientSubgroupOfFinite {G : Type u_1} [Group G] [Finite G] [IsZGroup G] (H : Subgroup G) [H.Normal] :

    A finite Z-group has cyclic abelianization.

    A finite Z-group has cyclic commutator subgroup.

    theorem IsZGroup.isZGroup_of_coprime {G : Type u_1} {G' : Type u_2} {G'' : Type u_3} [Group G] [Group G'] [Group G''] {f : G →* G'} {f' : G' →* G''} [Finite G] [IsZGroup G] [IsZGroup G''] (h_le : f'.ker f.range) (h_cop : (Nat.card G).Coprime (Nat.card G'')) :

    An extension of coprime Z-groups is a Z-group.