Z-Groups #
A Z-group is a group whose Sylow subgroups are all cyclic.
Main definitions #
IsZGroup G
: a predicate stating that all Sylow subgroups ofG
are cyclic.
Main results #
IsZGroup.isCyclic_abelianization
: a finite Z-group has cyclic abelianization.IsZGroup.isCyclic_commutator
: a finite Z-group has cyclic commutator subgroup.
TODO: Show that if G
is a Z-group with commutator subgroup G'
, then G = G' ⋊ G/G'
where G'
and G/G'
are cyclic of coprime orders.
theorem
IsZGroup.of_injective
{G : Type u_1}
{G' : Type u_2}
[Group G]
[Group G']
{f : G →* G'}
[hG' : IsZGroup G']
(hf : Function.Injective ⇑f)
:
IsZGroup G
theorem
IsZGroup.commutator_lt
(G : Type u_1)
[Group G]
[Finite G]
[IsZGroup G]
[Nontrivial G]
:
commutator G < ⊤
theorem
IsZGroup.exponent_eq_card
(G : Type u_1)
[Group G]
[Finite G]
[IsZGroup G]
:
Monoid.exponent G = Nat.card G
instance
IsZGroup.instIsCyclicOfFiniteOfIsNilpotent
{G : Type u_1}
[Group G]
[Finite G]
[IsZGroup G]
[hG : Group.IsNilpotent G]
:
IsCyclic G
A finite Z-group has cyclic abelianization.
theorem
IsZGroup.isCyclic_commutator
(G : Type u_1)
[Group G]
[Finite G]
[IsZGroup G]
:
IsCyclic ↥(commutator G)
A finite Z-group has cyclic commutator subgroup.
theorem
IsZGroup.isZGroup_of_coprime
{G : Type u_1}
{G' : Type u_2}
{G'' : Type u_3}
[Group G]
[Group G']
[Group G'']
{f : G →* G'}
{f' : G' →* G''}
[Finite G]
[IsZGroup G]
[IsZGroup G'']
(h_le : f'.ker ≤ f.range)
(h_cop : (Nat.card G).Coprime (Nat.card G''))
:
IsZGroup G'
An extension of coprime Z-groups is a Z-group.