The category of distributive lattices #
This file defines DistLat, the category of distributive lattices.
Note that DistLat in the literature doesn't always
correspond to DistLat as we don't require bottom or top elements. Instead, this DistLat
corresponds to BddDistLat.
The category of distributive lattices.
Equations
Instances For
Equations
- DistLat.instCoeSortType = CategoryTheory.Bundled.coeSort
Equations
- X.instDistribLatticeα = X.str
Construct a bundled DistLat from a DistribLattice underlying type and typeclass.
Equations
Instances For
Equations
- DistLat.instInhabited = { default := DistLat.of PUnit.{?u.3 + 1} }
Constructs an equivalence between distributive lattices from an order isomorphism between them.
Equations
- DistLat.Iso.mk e = { hom := { toFun := ⇑e, map_sup' := ⋯, map_inf' := ⋯ }, inv := { toFun := ⇑e.symm, map_sup' := ⋯, map_inf' := ⋯ }, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
theorem
DistLat.Iso.mk_hom_toSupHom_toFun
{α β : DistLat}
(e : ↑α ≃o ↑β)
(a : ↑α)
:
(DistLat.Iso.mk e).hom.toSupHom a = e a
@[simp]
theorem
DistLat.Iso.mk_inv_toSupHom_toFun
{α β : DistLat}
(e : ↑α ≃o ↑β)
(a : ↑β)
:
(DistLat.Iso.mk e).inv.toSupHom a = e.symm a
OrderDual as a functor.
Equations
- DistLat.dual = { obj := fun (X : DistLat) => DistLat.of (↑X)ᵒᵈ, map := fun {X Y : DistLat} => ⇑LatticeHom.dual, map_id := DistLat.dual.proof_1, map_comp := @DistLat.dual.proof_2 }
Instances For
@[simp]
theorem
DistLat.dual_map
{X✝ Y✝ : DistLat}
(a : LatticeHom ↑X✝ ↑Y✝)
:
DistLat.dual.map a = LatticeHom.dual a
theorem
distLat_dual_comp_forget_to_Lat :
DistLat.dual.comp (CategoryTheory.forget₂ DistLat Lat) = (CategoryTheory.forget₂ DistLat Lat).comp Lat.dual