Zero and Bounded at filter #
Given a filter l we define the notion of a function being ZeroAtFilter as well as being
BoundedAtFilter. Alongside this we construct the Submodule, AddSubmonoid of functions
that are ZeroAtFilter. Similarly, we construct the Submodule and Subalgebra of functions
that are BoundedAtFilter.
def
Filter.ZeroAtFilter
{α : Type u_2}
{β : Type u_3}
[Zero β]
[TopologicalSpace β]
(l : Filter α)
(f : α → β)
:
If l is a filter on α, then a function f : α → β is ZeroAtFilter l
if it tends to zero along l.
Equations
- l.ZeroAtFilter f = Filter.Tendsto f l (nhds 0)
Instances For
theorem
Filter.zero_zeroAtFilter
{α : Type u_2}
{β : Type u_3}
[Zero β]
[TopologicalSpace β]
(l : Filter α)
:
l.ZeroAtFilter 0
theorem
Filter.ZeroAtFilter.add
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[AddZeroClass β]
[ContinuousAdd β]
{l : Filter α}
{f g : α → β}
(hf : l.ZeroAtFilter f)
(hg : l.ZeroAtFilter g)
:
l.ZeroAtFilter (f + g)
theorem
Filter.ZeroAtFilter.neg
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[AddGroup β]
[ContinuousNeg β]
{l : Filter α}
{f : α → β}
(hf : l.ZeroAtFilter f)
:
l.ZeroAtFilter (-f)
theorem
Filter.ZeroAtFilter.smul
{𝕜 : Type u_1}
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[Zero 𝕜]
[Zero β]
[SMulWithZero 𝕜 β]
[ContinuousConstSMul 𝕜 β]
{l : Filter α}
{f : α → β}
(c : 𝕜)
(hf : l.ZeroAtFilter f)
:
l.ZeroAtFilter (c • f)
def
Filter.zeroAtFilterSubmodule
(𝕜 : Type u_1)
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[Semiring 𝕜]
[AddCommMonoid β]
[Module 𝕜 β]
[ContinuousAdd β]
[ContinuousConstSMul 𝕜 β]
(l : Filter α)
:
Submodule 𝕜 (α → β)
zeroAtFilterSubmodule l is the submodule of f : α → β which
tend to zero along l.
Equations
- Filter.zeroAtFilterSubmodule 𝕜 l = { carrier := l.ZeroAtFilter, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ }
Instances For
def
Filter.zeroAtFilterAddSubmonoid
{α : Type u_2}
{β : Type u_3}
[TopologicalSpace β]
[AddZeroClass β]
[ContinuousAdd β]
(l : Filter α)
:
AddSubmonoid (α → β)
zeroAtFilterAddSubmonoid l is the additive submonoid of f : α → β
which tend to zero along l.
Equations
- l.zeroAtFilterAddSubmonoid = { carrier := l.ZeroAtFilter, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
theorem
Filter.ZeroAtFilter.boundedAtFilter
{α : Type u_2}
{β : Type u_3}
[SeminormedAddGroup β]
{l : Filter α}
{f : α → β}
(hf : l.ZeroAtFilter f)
:
l.BoundedAtFilter f
theorem
Filter.const_boundedAtFilter
{α : Type u_2}
{β : Type u_3}
[Norm β]
(l : Filter α)
(c : β)
:
l.BoundedAtFilter (Function.const α c)
theorem
Filter.BoundedAtFilter.add
{α : Type u_2}
{β : Type u_3}
[SeminormedAddCommGroup β]
{l : Filter α}
{f g : α → β}
(hf : l.BoundedAtFilter f)
(hg : l.BoundedAtFilter g)
:
l.BoundedAtFilter (f + g)
theorem
Filter.BoundedAtFilter.neg
{α : Type u_2}
{β : Type u_3}
[SeminormedAddCommGroup β]
{l : Filter α}
{f : α → β}
(hf : l.BoundedAtFilter f)
:
l.BoundedAtFilter (-f)
theorem
Filter.BoundedAtFilter.smul
{𝕜 : Type u_1}
{α : Type u_2}
{β : Type u_3}
[SeminormedRing 𝕜]
[SeminormedAddCommGroup β]
[Module 𝕜 β]
[BoundedSMul 𝕜 β]
{l : Filter α}
{f : α → β}
(c : 𝕜)
(hf : l.BoundedAtFilter f)
:
l.BoundedAtFilter (c • f)
theorem
Filter.BoundedAtFilter.mul
{α : Type u_2}
{β : Type u_3}
[SeminormedRing β]
{l : Filter α}
{f g : α → β}
(hf : l.BoundedAtFilter f)
(hg : l.BoundedAtFilter g)
:
l.BoundedAtFilter (f * g)
def
Filter.boundedFilterSubmodule
(𝕜 : Type u_1)
{α : Type u_2}
{β : Type u_3}
[SeminormedRing 𝕜]
[SeminormedAddCommGroup β]
[Module 𝕜 β]
[BoundedSMul 𝕜 β]
(l : Filter α)
:
Submodule 𝕜 (α → β)
The submodule of functions that are bounded along a filter l.
Equations
- Filter.boundedFilterSubmodule 𝕜 l = { carrier := l.BoundedAtFilter, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ }
Instances For
def
Filter.boundedFilterSubalgebra
(𝕜 : Type u_1)
{α : Type u_2}
{β : Type u_3}
[SeminormedCommRing 𝕜]
[SeminormedRing β]
[Algebra 𝕜 β]
[BoundedSMul 𝕜 β]
(l : Filter α)
:
Subalgebra 𝕜 (α → β)
The subalgebra of functions that are bounded along a filter l.
Equations
- Filter.boundedFilterSubalgebra 𝕜 l = (Filter.boundedFilterSubmodule 𝕜 l).toSubalgebra ⋯ ⋯