Etale algebras over fields #
Main results #
Let K be a field, A be a K-algebra and L be a field extension of K.
Algebra.FormallyEtale.of_isSeparable: IfLis separable overK, thenLis formally etale overK.Algebra.FormallyEtale.iff_isSeparable: IfLis (essentially) of finite type overK, thenL/Kis etale iffL/Kis separable.
References #
- [B. Iversen, Generic Local Structure of the Morphisms in Commutative Algebra][iversen]
theorem
Algebra.FormallyEtale.of_isSeparable_aux
(K L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.IsSeparable K L]
[Algebra.EssFiniteType K L]
:
This is a weaker version of of_isSeparable that additionally assumes EssFiniteType K L.
Use that instead.
This is Iversen Corollary II.5.3.
theorem
Algebra.FormallyEtale.of_isSeparable
(K L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.IsSeparable K L]
:
theorem
Algebra.FormallyEtale.iff_isSeparable
(K L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.EssFiniteType K L]
: