Division (semi)rings and (semi)fields #
This file introduces fields and division rings (also known as skewfields) and proves some basic
statements about them. For a more extensive theory of fields, see the FieldTheory folder.
Main definitions #
DivisionSemiring: Nontrivial semiring with multiplicative inverses for nonzero elements.DivisionRing: : Nontrivial ring with multiplicative inverses for nonzero elements.Semifield: Commutative division semiring.Field: Commutative division ring.IsField: Predicate on a (semi)ring that it is a (semi)field, i.e. that the multiplication is commutative, that it has more than one element and that all non-zero elements have a multiplicative inverse. In contrast toField, which contains the data of a function associating to an element of the field its multiplicative inverse, this predicate only assumes the existence and can therefore more easily be used to e.g. transfer along ring isomorphisms.
Implementation details #
By convention 0⁻¹ = 0 in a field or division ring. This is due to the fact that working with total
functions has the advantage of not constantly having to check that x ≠ 0 when writing x⁻¹. With
this convention in place, some statements like (a + b) * c⁻¹ = a * c⁻¹ + b * c⁻¹ still remain
true, while others like the defining property a * a⁻¹ = 1 need the assumption a ≠ 0. If you are
a beginner in using Lean and are confused by that, you can read more about why this convention is
taken in Kevin Buzzard's
blogpost
A division ring or field is an example of a GroupWithZero. If you cannot find
a division ring / field lemma that does not involve +, you can try looking for
a GroupWithZero lemma instead.
Tags #
field, division ring, skew field, skew-field, skewfield
The default definition of the coercion ℚ → K for a division ring K.
↑q : K is defined as (q.num : K) * (q.den : K)⁻¹.
Do not use this directly (instances of DivisionRing are allowed to override that default for
better definitional properties). Instead, use the coercion.
Equations
- Rat.castRec q = ↑q.num * (↑q.den)⁻¹
Instances For
The default definition of the scalar multiplication by ℚ on a division ring K.
q • x is defined as ↑q * x.
Do not use directly (instances of DivisionRing are allowed to override that default for
better definitional properties). Instead use the • notation.
Instances For
A DivisionSemiring is a Semiring with multiplicative inverses for nonzero elements.
An instance of DivisionSemiring K includes maps nnratCast : ℚ≥0 → K and nnqsmul : ℚ≥0 → K → K.
Those two fields are needed to implement the DivisionSemiring K → Algebra ℚ≥0 K instance since we
need to control the specific definitions for some special cases of K (in particular K = ℚ≥0
itself). See also note [forgetful inheritance].
If the division semiring has positive characteristic p, our division by zero convention forces
nnratCast (1 / p) = 1 / 0 = 0.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = Semiring.npow n x * x
- inv : α → α
- div : α → α → α
a / b := a * b⁻¹- zpow : ℤ → α → α
The power operation:
a ^ n = a * ··· * a;a ^ (-n) = a⁻¹ * ··· a⁻¹(ntimes) - zpow_zero' : ∀ (a : α), DivisionSemiring.zpow 0 a = 1
a ^ 0 = 1 - zpow_succ' : ∀ (n : ℕ) (a : α), DivisionSemiring.zpow (Int.ofNat (Nat.succ n)) a = DivisionSemiring.zpow (Int.ofNat n) a * a
a ^ (n + 1) = a ^ n * a - zpow_neg' : ∀ (n : ℕ) (a : α), DivisionSemiring.zpow (Int.negSucc n) a = (DivisionSemiring.zpow (↑(Nat.succ n)) a)⁻¹
a ^ -(n + 1) = (a ^ (n + 1))⁻¹ - exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
The inverse of
0in a group with zero is0.Every nonzero element of a group with zero is invertible.
Instances
A DivisionRing is a Ring with multiplicative inverses for nonzero elements.
An instance of DivisionRing K includes maps ratCast : ℚ → K and qsmul : ℚ → K → K.
Those two fields are needed to implement the DivisionRing K → Algebra ℚ K instance since we need
to control the specific definitions for some special cases of K (in particular K = ℚ itself).
See also note [forgetful inheritance]. Similarly, there are maps nnratCast ℚ≥0 → K and
nnqsmul : ℚ≥0 → K → K to implement the DivisionSemiring K → Algebra ℚ≥0 K instance.
If the division ring has positive characteristic p, our division by zero convention forces
ratCast (1 / p) = 1 / 0 = 0.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = Semiring.npow n x * x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = Ring.zsmul (Int.ofNat n) a + a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- inv : α → α
- div : α → α → α
a / b := a * b⁻¹- zpow : ℤ → α → α
The power operation:
a ^ n = a * ··· * a;a ^ (-n) = a⁻¹ * ··· a⁻¹(ntimes) - zpow_zero' : ∀ (a : α), DivisionRing.zpow 0 a = 1
a ^ 0 = 1 - zpow_succ' : ∀ (n : ℕ) (a : α), DivisionRing.zpow (Int.ofNat (Nat.succ n)) a = DivisionRing.zpow (Int.ofNat n) a * a
a ^ (n + 1) = a ^ n * a - zpow_neg' : ∀ (n : ℕ) (a : α), DivisionRing.zpow (Int.negSucc n) a = (DivisionRing.zpow (↑(Nat.succ n)) a)⁻¹
a ^ -(n + 1) = (a ^ (n + 1))⁻¹ - exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- ratCast : ℚ → α
For a nonzero
a,a⁻¹is a right multiplicative inverse.The inverse of
0is0by convention.- ratCast_mk : ∀ (a : ℤ) (b : ℕ) (h1 : b ≠ 0) (h2 : Nat.Coprime (Int.natAbs a) b), ↑{ num := a, den := b, den_nz := h1, reduced := h2 } = ↑a * (↑b)⁻¹
However
Rat.castis defined, it must be propositionally equal toa * b⁻¹.Do not use this lemma directly. Use
Rat.cast_definstead. - qsmul : ℚ → α → α
Scalar multiplication by a rational number.
Set this to
qsmulRec _unless there is a risk of aModule ℚ _instance diamond.Do not use directly. Instead use the
•notation. - qsmul_eq_mul' : ∀ (a : ℚ) (x : α), DivisionRing.qsmul a x = ↑a * x
However
qsmulis defined, it must be propositionally equal to multiplication byRat.cast.Do not use this lemma directly. Use
Rat.cast_definstead.
Instances
Equations
- DivisionRing.toDivisionSemiring = let __src := inst; DivisionSemiring.mk ⋯ DivisionRing.zpow ⋯ ⋯ ⋯ ⋯ ⋯
A Semifield is a CommSemiring with multiplicative inverses for nonzero elements.
An instance of Semifield K includes maps nnratCast : ℚ≥0 → K and nnqsmul : ℚ≥0 → K → K.
Those two fields are needed to implement the DivisionSemiring K → Algebra ℚ≥0 K instance since we
need to control the specific definitions for some special cases of K (in particular K = ℚ≥0
itself). See also note [forgetful inheritance].
If the semifield has positive characteristic p, our division by zero convention forces
nnratCast (1 / p) = 1 / 0 = 0.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = Semiring.npow n x * x
- inv : α → α
- div : α → α → α
a / b := a * b⁻¹- zpow : ℤ → α → α
The power operation:
a ^ n = a * ··· * a;a ^ (-n) = a⁻¹ * ··· a⁻¹(ntimes) - zpow_zero' : ∀ (a : α), Semifield.zpow 0 a = 1
a ^ 0 = 1 - zpow_succ' : ∀ (n : ℕ) (a : α), Semifield.zpow (Int.ofNat (Nat.succ n)) a = Semifield.zpow (Int.ofNat n) a * a
a ^ (n + 1) = a ^ n * a - zpow_neg' : ∀ (n : ℕ) (a : α), Semifield.zpow (Int.negSucc n) a = (Semifield.zpow (↑(Nat.succ n)) a)⁻¹
a ^ -(n + 1) = (a ^ (n + 1))⁻¹ - exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
The inverse of
0in a group with zero is0.Every nonzero element of a group with zero is invertible.
Instances
A Field is a CommRing with multiplicative inverses for nonzero elements.
An instance of Field K includes maps ratCast : ℚ → K and qsmul : ℚ → K → K.
Those two fields are needed to implement the DivisionRing K → Algebra ℚ K instance since we need
to control the specific definitions for some special cases of K (in particular K = ℚ itself).
See also note [forgetful inheritance].
If the field has positive characteristic p, our division by zero convention forces
ratCast (1 / p) = 1 / 0 = 0.
- add : K → K → K
- zero : K
- nsmul : ℕ → K → K
- nsmul_zero : ∀ (x : K), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : K), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- mul : K → K → K
- one : K
- natCast : ℕ → K
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → K → K
- npow_zero : ∀ (x : K), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : K), Semiring.npow (n + 1) x = Semiring.npow n x * x
- neg : K → K
- sub : K → K → K
- zsmul : ℤ → K → K
- zsmul_zero' : ∀ (a : K), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : K), Ring.zsmul (Int.ofNat (Nat.succ n)) a = Ring.zsmul (Int.ofNat n) a + a
- zsmul_neg' : ∀ (n : ℕ) (a : K), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → K
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- inv : K → K
- div : K → K → K
a / b := a * b⁻¹- zpow : ℤ → K → K
The power operation:
a ^ n = a * ··· * a;a ^ (-n) = a⁻¹ * ··· a⁻¹(ntimes) - zpow_zero' : ∀ (a : K), Field.zpow 0 a = 1
a ^ 0 = 1 - zpow_succ' : ∀ (n : ℕ) (a : K), Field.zpow (Int.ofNat (Nat.succ n)) a = Field.zpow (Int.ofNat n) a * a
a ^ (n + 1) = a ^ n * a - zpow_neg' : ∀ (n : ℕ) (a : K), Field.zpow (Int.negSucc n) a = (Field.zpow (↑(Nat.succ n)) a)⁻¹
a ^ -(n + 1) = (a ^ (n + 1))⁻¹ - exists_pair_ne : ∃ (x : K), ∃ (y : K), x ≠ y
- ratCast : ℚ → K
For a nonzero
a,a⁻¹is a right multiplicative inverse.The inverse of
0is0by convention.- ratCast_mk : ∀ (a : ℤ) (b : ℕ) (h1 : b ≠ 0) (h2 : Nat.Coprime (Int.natAbs a) b), ↑{ num := a, den := b, den_nz := h1, reduced := h2 } = ↑a * (↑b)⁻¹
However
Rat.castis defined, it must be propositionally equal toa * b⁻¹.Do not use this lemma directly. Use
Rat.cast_definstead. - qsmul : ℚ → K → K
Scalar multiplication by a rational number.
Set this to
qsmulRec _unless there is a risk of aModule ℚ _instance diamond.Do not use directly. Instead use the
•notation. - qsmul_eq_mul' : ∀ (a : ℚ) (x : K), Field.qsmul a x = ↑a * x
However
qsmulis defined, it must be propositionally equal to multiplication byRat.cast.Do not use this lemma directly. Use
Rat.cast_definstead.
Instances
Equations
- Field.toSemifield = let __src := inst; Semifield.mk ⋯ Field.zpow ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- Rat.smulDivisionRing = { smul := DivisionRing.qsmul }
Equations
- RatCast.toOfScientific = { ofScientific := fun (m : ℕ) (b : Bool) (d : ℕ) => ↑(Rat.ofScientific m b d) }