Angle between complex numbers #
This file relates the Euclidean geometric notion of angle between complex numbers to the argument of their quotient.
TODO #
Prove the corresponding results for oriented angles.
Tags #
arc-length, arc-distance
theorem
Complex.angle_eq_abs_arg
{x : ℂ}
{y : ℂ}
(hx : x ≠ 0)
(hy : y ≠ 0)
:
InnerProductGeometry.angle x y = |Complex.arg (x / y)|
The angle between two non-zero complex numbers is the absolute value of the argument of their quotient.
Note that this does not hold when x
or y
is 0
as the LHS is π / 2
while the RHS is 0
.
theorem
Complex.angle_one_left
{y : ℂ}
(hy : y ≠ 0)
:
InnerProductGeometry.angle 1 y = |Complex.arg y|
theorem
Complex.angle_one_right
{x : ℂ}
(hx : x ≠ 0)
:
InnerProductGeometry.angle x 1 = |Complex.arg x|
@[simp]
theorem
Complex.angle_mul_left
{a : ℂ}
(ha : a ≠ 0)
(x : ℂ)
(y : ℂ)
:
InnerProductGeometry.angle (a * x) (a * y) = InnerProductGeometry.angle x y
@[simp]
theorem
Complex.angle_mul_right
{a : ℂ}
(ha : a ≠ 0)
(x : ℂ)
(y : ℂ)
:
InnerProductGeometry.angle (x * a) (y * a) = InnerProductGeometry.angle x y
theorem
Complex.angle_div_left_eq_angle_mul_right
(a : ℂ)
(x : ℂ)
(y : ℂ)
:
InnerProductGeometry.angle (x / a) y = InnerProductGeometry.angle x (y * a)
theorem
Complex.angle_div_right_eq_angle_mul_left
(a : ℂ)
(x : ℂ)
(y : ℂ)
:
InnerProductGeometry.angle x (y / a) = InnerProductGeometry.angle (x * a) y
theorem
Complex.angle_exp_exp
(x : ℝ)
(y : ℝ)
:
InnerProductGeometry.angle (Complex.exp (↑x * Complex.I)) (Complex.exp (↑y * Complex.I)) = |toIocMod Real.two_pi_pos (-Real.pi) (x - y)|
theorem
Complex.angle_exp_one
(x : ℝ)
:
InnerProductGeometry.angle (Complex.exp (↑x * Complex.I)) 1 = |toIocMod Real.two_pi_pos (-Real.pi) x|