Documentation

Mathlib.Analysis.Convex.Cone.InnerDual

Convex cones in inner product spaces #

We define Set.innerDualCone to be the cone consisting of all points y such that for all points x in a given set 0 ≤ ⟪ x, y ⟫.

Main statements #

We prove the following theorems:

The dual cone #

The dual cone is the cone consisting of all points y such that for all points x in a given set 0 ≤ ⟪ x, y ⟫.

Equations
Instances For
    @[simp]
    theorem mem_innerDualCone {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace H] (y : H) (s : Set H) :
    y Set.innerDualCone s xs, 0 x, y⟫_
    @[simp]

    Dual cone of the convex cone {0} is the total space.

    @[simp]

    Dual cone of the total space is the convex cone {0}.

    The inner dual cone of a singleton is given by the preimage of the positive cone under the linear map fun y ↦ ⟪x, y⟫.

    theorem innerDualCone_iUnion {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace H] {ι : Sort u_6} (f : ιSet H) :
    Set.innerDualCone (⋃ (i : ι), f i) = ⨅ (i : ι), Set.innerDualCone (f i)
    theorem innerDualCone_sUnion {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace H] (S : Set (Set H)) :
    Set.innerDualCone (⋃₀ S) = sInf (Set.innerDualCone '' S)

    The dual cone of s equals the intersection of dual cones of the points in s.

    theorem ConvexCone.hyperplane_separation_of_nonempty_of_isClosed_of_nmem {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace H] [CompleteSpace H] (K : ConvexCone H) (ne : Set.Nonempty K) (hc : IsClosed K) {b : H} (disj : bK) :
    ∃ (y : H), (xK, 0 x, y⟫_) y, b⟫_ < 0

    This is a stronger version of the Hahn-Banach separation theorem for closed convex cones. This is also the geometric interpretation of Farkas' lemma.

    The inner dual of inner dual of a non-empty, closed convex cone is itself.