Documentation

Mathlib.Analysis.Distribution.SchwartzSpace

Schwartz space #

This file defines the Schwartz space. Usually, the Schwartz space is defined as the set of smooth functions $f : ℝ^n β†’ β„‚$ such that there exists $C_{Ξ±Ξ²} > 0$ with $$|x^Ξ± βˆ‚^Ξ² f(x)| < C_{Ξ±Ξ²}$$ for all $x ∈ ℝ^n$ and for all multiindices $Ξ±, Ξ²$. In mathlib, we use a slightly different approach and define the Schwartz space as all smooth functions f : E β†’ F, where E and F are real normed vector spaces such that for all natural numbers k and n we have uniform bounds β€–xβ€–^k * β€–iteratedFDeriv ℝ n f xβ€– < C. This approach completely avoids using partial derivatives as well as polynomials. We construct the topology on the Schwartz space by a family of seminorms, which are the best constants in the above estimates. The abstract theory of topological vector spaces developed in SeminormFamily.moduleFilterBasis and WithSeminorms.toLocallyConvexSpace turns the Schwartz space into a locally convex topological vector space.

Main definitions #

Main statements #

Implementation details #

The implementation of the seminorms is taken almost literally from ContinuousLinearMap.opNorm.

Notation #

Tags #

Schwartz space, tempered distributions

structure SchwartzMap (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] :
Type (max u_4 u_5)

A function is a Schwartz function if it is smooth and all derivatives decay faster than any power of β€–xβ€–.

Instances For

    A function is a Schwartz function if it is smooth and all derivatives decay faster than any power of β€–xβ€–.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • SchwartzMap.instFunLike = { coe := fun (f : SchwartzMap E F) => f.toFun, coe_injective' := β‹― }
      instance SchwartzMap.instCoeFun {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] :
      CoeFun (SchwartzMap E F) fun (x : SchwartzMap E F) => E β†’ F

      Helper instance for when there's too many metavariables to apply DFunLike.hasCoeToFun.

      Equations
      • SchwartzMap.instCoeFun = DFunLike.hasCoeToFun
      theorem SchwartzMap.decay {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (k : β„•) (n : β„•) :
      βˆƒ (C : ℝ), 0 < C ∧ βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ C

      All derivatives of a Schwartz function are rapidly decaying.

      Every Schwartz function is smooth.

      Every Schwartz function is continuous.

      Every Schwartz function is differentiable.

      Every Schwartz function is differentiable at any point.

      theorem SchwartzMap.ext {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : SchwartzMap E F} {g : SchwartzMap E F} (h : βˆ€ (x : E), f x = g x) :
      f = g

      Auxiliary lemma, used in proving the more general result isBigO_cocompact_rpow.

      theorem SchwartzMap.bounds_nonempty {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) :
      βˆƒ (c : ℝ), c ∈ {c : ℝ | 0 ≀ c ∧ βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ c}
      theorem SchwartzMap.decay_smul_aux {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) (c : π•œ) (x : E) :

      Helper definition for the seminorms of the Schwartz space.

      Equations
      Instances For
        theorem SchwartzMap.seminormAux_le_bound {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ M) :

        If one controls the norm of every A x, then one controls the norm of A.

        Algebraic properties #

        instance SchwartzMap.instSMul {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
        SMul π•œ (SchwartzMap E F)
        Equations
        • SchwartzMap.instSMul = { smul := fun (c : π•œ) (f : SchwartzMap E F) => { toFun := c β€’ ⇑f, smooth' := β‹―, decay' := β‹― } }
        @[simp]
        theorem SchwartzMap.smul_apply {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {f : SchwartzMap E F} {c : π•œ} {x : E} :
        (c β€’ f) x = c β€’ f x
        instance SchwartzMap.instIsScalarTower {π•œ : Type u_1} {π•œ' : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass ℝ π•œ' F] [SMul π•œ π•œ'] [IsScalarTower π•œ π•œ' F] :
        IsScalarTower π•œ π•œ' (SchwartzMap E F)
        Equations
        • β‹― = β‹―
        instance SchwartzMap.instSMulCommClass {π•œ : Type u_1} {π•œ' : Type u_2} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass ℝ π•œ' F] [SMulCommClass π•œ π•œ' F] :
        SMulCommClass π•œ π•œ' (SchwartzMap E F)
        Equations
        • β‹― = β‹―
        theorem SchwartzMap.seminormAux_smul_le {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (c : π•œ) (f : SchwartzMap E F) :
        Equations
        • SchwartzMap.instNSMul = { smul := fun (c : β„•) (f : SchwartzMap E F) => { toFun := c β€’ ⇑f, smooth' := β‹―, decay' := β‹― } }
        Equations
        • SchwartzMap.instZSMul = { smul := fun (c : β„€) (f : SchwartzMap E F) => { toFun := c β€’ ⇑f, smooth' := β‹―, decay' := β‹― } }
        Equations
        • SchwartzMap.instZero = { zero := { toFun := fun (x : E) => 0, smooth' := β‹―, decay' := β‹― } }
        Equations
        • SchwartzMap.instInhabited = { default := 0 }
        @[simp]
        @[simp]
        theorem SchwartzMap.zero_apply {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {x : E} :
        0 x = 0
        Equations
        • SchwartzMap.instNeg = { neg := fun (f : SchwartzMap E F) => { toFun := -⇑f, smooth' := β‹―, decay' := β‹― } }
        Equations
        • SchwartzMap.instAdd = { add := fun (f g : SchwartzMap E F) => { toFun := ⇑f + ⇑g, smooth' := β‹―, decay' := β‹― } }
        @[simp]
        theorem SchwartzMap.add_apply {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : SchwartzMap E F} {g : SchwartzMap E F} {x : E} :
        (f + g) x = f x + g x
        Equations
        • SchwartzMap.instSub = { sub := fun (f g : SchwartzMap E F) => { toFun := ⇑f - ⇑g, smooth' := β‹―, decay' := β‹― } }
        @[simp]
        theorem SchwartzMap.sub_apply {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : SchwartzMap E F} {g : SchwartzMap E F} {x : E} :
        (f - g) x = f x - g x
        Equations

        Coercion as an additive homomorphism.

        Equations
        Instances For
          instance SchwartzMap.instModule {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
          Module π•œ (SchwartzMap E F)
          Equations

          Seminorms on Schwartz space #

          def SchwartzMap.seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) :
          Seminorm π•œ (SchwartzMap E F)

          The seminorms of the Schwartz space given by the best constants in the definition of 𝓒(E, F).

          Equations
          Instances For
            theorem SchwartzMap.seminorm_le_bound (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ M) :
            (SchwartzMap.seminorm π•œ k n) f ≀ M

            If one controls the seminorm for every x, then one controls the seminorm.

            theorem SchwartzMap.seminorm_le_bound' (π•œ : Type u_1) {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap ℝ F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : ℝ), |x| ^ k * β€–iteratedDeriv n (⇑f) xβ€– ≀ M) :
            (SchwartzMap.seminorm π•œ k n) f ≀ M

            If one controls the seminorm for every x, then one controls the seminorm.

            Variant for functions 𝓒(ℝ, F).

            theorem SchwartzMap.le_seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap E F) (x : E) :

            The seminorm controls the Schwartz estimate for any fixed x.

            theorem SchwartzMap.le_seminorm' (π•œ : Type u_1) {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k : β„•) (n : β„•) (f : SchwartzMap ℝ F) (x : ℝ) :
            |x| ^ k * β€–iteratedDeriv n (⇑f) xβ€– ≀ (SchwartzMap.seminorm π•œ k n) f

            The seminorm controls the Schwartz estimate for any fixed x.

            Variant for functions 𝓒(ℝ, F).

            theorem SchwartzMap.norm_iteratedFDeriv_le_seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (n : β„•) (xβ‚€ : E) :
            β€–iteratedFDeriv ℝ n (⇑f) xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ 0 n) f
            theorem SchwartzMap.norm_pow_mul_le_seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (k : β„•) (xβ‚€ : E) :
            β€–xβ‚€β€– ^ k * β€–f xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ k 0) f
            theorem SchwartzMap.norm_le_seminorm (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (xβ‚€ : E) :
            β€–f xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ 0 0) f
            def schwartzSeminormFamily (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

            The family of Schwartz seminorms.

            Equations
            Instances For
              @[simp]
              theorem SchwartzMap.schwartzSeminormFamily_apply (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (n : β„•) (k : β„•) :
              schwartzSeminormFamily π•œ E F (n, k) = SchwartzMap.seminorm π•œ n k
              @[simp]
              theorem SchwartzMap.schwartzSeminormFamily_apply_zero (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              schwartzSeminormFamily π•œ E F 0 = SchwartzMap.seminorm π•œ 0 0
              theorem SchwartzMap.one_add_le_sup_seminorm_apply {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {m : β„• Γ— β„•} {k : β„•} {n : β„•} (hk : k ≀ m.1) (hn : n ≀ m.2) (f : SchwartzMap E F) (x : E) :
              (1 + β€–xβ€–) ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ 2 ^ m.1 * (Finset.sup (Finset.Iic m) fun (m : β„• Γ— β„•) => SchwartzMap.seminorm π•œ m.1 m.2) f

              A more convenient version of le_sup_seminorm_apply.

              The set Finset.Iic m is the set of all pairs (k', n') with k' ≀ m.1 and n' ≀ m.2. Note that the constant is far from optimal.

              The topology on the Schwartz space #

              theorem schwartz_withSeminorms (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              instance SchwartzMap.instContinuousSMul {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              Equations
              • β‹― = β‹―

              Functions of temperate growth #

              A function is called of temperate growth if it is smooth and all iterated derivatives are polynomially bounded.

              Equations
              Instances For
                theorem Function.HasTemperateGrowth.norm_iteratedFDeriv_le_uniform_aux {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} (hf_temperate : Function.HasTemperateGrowth f) (n : β„•) :
                βˆƒ (k : β„•) (C : ℝ), 0 ≀ C ∧ βˆ€ N ≀ n, βˆ€ (x : E), β€–iteratedFDeriv ℝ N f xβ€– ≀ C * (1 + β€–xβ€–) ^ k

                A measure ΞΌ has temperate growth if there is an n : β„• such that (1 + β€–xβ€–) ^ (- n) is ΞΌ-integrable.

                Instances

                  Construction of continuous linear maps between Schwartz spaces #

                  def SchwartzMap.mkLM {π•œ : Type u_1} {π•œ' : Type u_2} {D : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ' G] [SMulCommClass ℝ π•œ' G] {Οƒ : π•œ β†’+* π•œ'} (A : (D β†’ E) β†’ F β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E) (x : F), A (⇑f + ⇑g) x = A (⇑f) x + A (⇑g) x) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E) (x : F), A (a β€’ ⇑f) x = Οƒ a β€’ A (⇑f) x) (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ ⊀ (A ⇑f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A ⇑f) xβ€– ≀ C * (Finset.sup s (schwartzSeminormFamily π•œ D E)) f) :

                  Create a semilinear map between Schwartz spaces.

                  Note: This is a helper definition for mkCLM.

                  Equations
                  • SchwartzMap.mkLM A hadd hsmul hsmooth hbound = { toAddHom := { toFun := fun (f : SchwartzMap D E) => { toFun := A ⇑f, smooth' := β‹―, decay' := β‹― }, map_add' := β‹― }, map_smul' := β‹― }
                  Instances For
                    def SchwartzMap.mkCLM {π•œ : Type u_1} {π•œ' : Type u_2} {D : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ' G] [SMulCommClass ℝ π•œ' G] {Οƒ : π•œ β†’+* π•œ'} [RingHomIsometric Οƒ] (A : (D β†’ E) β†’ F β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E) (x : F), A (⇑f + ⇑g) x = A (⇑f) x + A (⇑g) x) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E) (x : F), A (a β€’ ⇑f) x = Οƒ a β€’ A (⇑f) x) (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ ⊀ (A ⇑f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A ⇑f) xβ€– ≀ C * (Finset.sup s (schwartzSeminormFamily π•œ D E)) f) :

                    Create a continuous semilinear map between Schwartz spaces.

                    For an example of using this definition, see fderivCLM.

                    Equations
                    Instances For
                      def SchwartzMap.mkCLMtoNormedSpace {π•œ : Type u_1} {π•œ' : Type u_2} {D : Type u_3} {E : Type u_4} {G : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace π•œ' G] {Οƒ : π•œ β†’+* π•œ'} [RingHomIsometric Οƒ] (A : SchwartzMap D E β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E), A (f + g) = A f + A g) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E), A (a β€’ f) = Οƒ a β€’ A f) (hbound : βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E), β€–A fβ€– ≀ C * (Finset.sup s (schwartzSeminormFamily π•œ D E)) f) :

                      Define a continuous semilinear map from Schwartz space to a normed space.

                      Equations
                      Instances For
                        def SchwartzMap.evalCLM {π•œ : Type u_1} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) :

                        The map applying a vector to Hom-valued Schwartz function as a continuous linear map.

                        Equations
                        Instances For

                          The map f ↦ (x ↦ B (f x) (g x)) as a continuous π•œ-linear map on Schwartz space, where B is a continuous π•œ-linear map and g is a function of temperate growth.

                          Equations
                          Instances For
                            def SchwartzMap.compCLM (π•œ : Type u_1) {D : Type u_3} {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (hg_upper : βˆƒ (k : β„•) (C : ℝ), βˆ€ (x : D), β€–xβ€– ≀ C * (1 + β€–g xβ€–) ^ k) :

                            Composition with a function on the right is a continuous linear map on Schwartz space provided that the function is temperate and growths polynomially near infinity.

                            Equations
                            Instances For

                              Derivatives of Schwartz functions #

                              def SchwartzMap.fderivCLM (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

                              The FrΓ©chet derivative on Schwartz space as a continuous π•œ-linear map.

                              Equations
                              Instances For
                                @[simp]
                                theorem SchwartzMap.fderivCLM_apply (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                ((SchwartzMap.fderivCLM π•œ) f) x = fderiv ℝ (⇑f) x
                                def SchwartzMap.derivCLM (π•œ : Type u_1) {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

                                The 1-dimensional derivative on Schwartz space as a continuous π•œ-linear map.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem SchwartzMap.derivCLM_apply (π•œ : Type u_1) {F : Type u_5} [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap ℝ F) (x : ℝ) :
                                  ((SchwartzMap.derivCLM π•œ) f) x = deriv (⇑f) x
                                  def SchwartzMap.pderivCLM (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) :

                                  The partial derivative (or directional derivative) in the direction m : E as a continuous linear map on Schwartz space.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem SchwartzMap.pderivCLM_apply (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) (f : SchwartzMap E F) (x : E) :
                                    ((SchwartzMap.pderivCLM π•œ m) f) x = (fderiv ℝ (⇑f) x) m
                                    theorem SchwartzMap.pderivCLM_eq_lineDeriv (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) (f : SchwartzMap E F) (x : E) :
                                    ((SchwartzMap.pderivCLM π•œ m) f) x = lineDeriv ℝ (⇑f) x m
                                    def SchwartzMap.iteratedPDeriv (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {n : β„•} :
                                    (Fin n β†’ E) β†’ SchwartzMap E F β†’L[π•œ] SchwartzMap E F

                                    The iterated partial derivative (or directional derivative) as a continuous linear map on Schwartz space.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[simp]
                                      theorem SchwartzMap.iteratedPDeriv_zero (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : Fin 0 β†’ E) (f : SchwartzMap E F) :
                                      (SchwartzMap.iteratedPDeriv π•œ m) f = f
                                      @[simp]
                                      theorem SchwartzMap.iteratedPDeriv_one (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : Fin 1 β†’ E) (f : SchwartzMap E F) :
                                      (SchwartzMap.iteratedPDeriv π•œ m) f = (SchwartzMap.pderivCLM π•œ (m 0)) f
                                      theorem SchwartzMap.iteratedPDeriv_succ_left (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {n : β„•} (m : Fin (n + 1) β†’ E) (f : SchwartzMap E F) :
                                      (SchwartzMap.iteratedPDeriv π•œ m) f = (SchwartzMap.pderivCLM π•œ (m 0)) ((SchwartzMap.iteratedPDeriv π•œ (Fin.tail m)) f)
                                      theorem SchwartzMap.iteratedPDeriv_succ_right (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {n : β„•} (m : Fin (n + 1) β†’ E) (f : SchwartzMap E F) :
                                      theorem SchwartzMap.iteratedPDeriv_eq_iteratedFDeriv (π•œ : Type u_1) {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {n : β„•} {m : Fin n β†’ E} {f : SchwartzMap E F} {x : E} :
                                      ((SchwartzMap.iteratedPDeriv π•œ m) f) x = (iteratedFDeriv ℝ n (⇑f) x) m

                                      Integration #

                                      The integral as a continuous linear map from Schwartz space to the codomain.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem SchwartzMap.integralCLM_apply (π•œ : Type u_1) {D : Type u_3} {V : Type u_7} [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup V] [NormedSpace ℝ V] [NormedSpace π•œ V] [MeasurableSpace D] [BorelSpace D] [SecondCountableTopology D] {ΞΌ : MeasureTheory.Measure D} [hΞΌ : MeasureTheory.Measure.HasTemperateGrowth ΞΌ] (f : SchwartzMap D V) :
                                        (SchwartzMap.integralCLM π•œ ΞΌ) f = ∫ (x : D), f x βˆ‚ΞΌ

                                        Inclusion into the space of bounded continuous functions #

                                        Schwartz functions as continuous functions

                                        Equations
                                        Instances For

                                          The inclusion map from Schwartz functions to bounded continuous functions as a continuous linear map.

                                          Equations
                                          Instances For
                                            @[simp]
                                            theorem SchwartzMap.toBoundedContinuousFunctionCLM_apply (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                            def SchwartzMap.delta (π•œ : Type u_1) {E : Type u_4} (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (x : E) :
                                            SchwartzMap E F β†’L[π•œ] F

                                            The Dirac delta distribution

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem SchwartzMap.delta_apply (π•œ : Type u_1) {E : Type u_4} (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (xβ‚€ : E) (f : SchwartzMap E F) :
                                              (SchwartzMap.delta π•œ F xβ‚€) f = f xβ‚€
                                              @[simp]

                                              Integrating against the Dirac measure is equal to the delta distribution.

                                              Schwartz functions as continuous functions vanishing at infinity.

                                              Equations
                                              Instances For

                                                The inclusion map from Schwartz functions to continuous functions vanishing at infinity as a continuous linear map.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  theorem SchwartzMap.toZeroAtInftyCLM_apply (π•œ : Type u_1) (E : Type u_4) (F : Type u_5) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [ProperSpace E] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                                  ((SchwartzMap.toZeroAtInftyCLM π•œ E F) f) x = f x