Documentation

Mathlib.Analysis.Normed.Group.HomCompletion

Completion of normed group homs #

Given two (semi) normed groups G and H and a normed group hom f : NormedAddGroupHom G H, we build and study a normed group hom f.completion : NormedAddGroupHom (completion G) (completion H) such that the diagram

                   f
     G       ----------->     H

     |                        |
     |                        |
     |                        |
     V                        V

completion G -----------> completion H
            f.completion

commutes. The map itself comes from the general theory of completion of uniform spaces, but here we want a normed group hom, study its operator norm and kernel.

The vertical maps in the above diagrams are also normed group homs constructed in this file.

Main definitions and results: #

@[simp]
theorem NormedAddGroupHom.completion_coe' {G : Type u_1} [SeminormedAddCommGroup G] {H : Type u_2} [SeminormedAddCommGroup H] (f : NormedAddGroupHom G H) (g : G) :
UniformSpace.Completion.map (f) (G g) = H (f g)
@[simp]

Completion of normed group homs as a normed group hom.

Equations
  • normedAddGroupHomCompletionHom = { toZeroHom := { toFun := NormedAddGroupHom.completion, map_zero' := }, map_add' := }
Instances For
    @[simp]
    theorem NormedAddCommGroup.toCompl_apply {G : Type u_1} [SeminormedAddCommGroup G] :
    ∀ (a : G), NormedAddCommGroup.toCompl a = G a

    The map from a normed group to its completion, as a normed group hom.

    Equations
    • NormedAddCommGroup.toCompl = { toFun := G, map_add' := , bound' := }
    Instances For
      theorem NormedAddCommGroup.norm_toCompl {G : Type u_1} [SeminormedAddCommGroup G] (x : G) :
      NormedAddCommGroup.toCompl x = x
      theorem NormedAddCommGroup.denseRange_toCompl {G : Type u_1} [SeminormedAddCommGroup G] :
      DenseRange NormedAddCommGroup.toCompl
      @[simp]