Instances of the continuous functional calculus #
Main definitions #
IsStarNormal.instContinuousFunctionalCalculus
: the continuous functional calculus for normal elements in a unital C⋆-algebra overℂ
.IsSelfAdjoint.instContinuousFunctionalCalculus
: the continuous functional calculus for selfadjoint elements in a unital C⋆-algebra overℂ
.Nonneg.instContinuousFunctionalCalculus
: the continuous functional calculus for nonnegative elements in a unital C⋆-algebra overℂ
, which is also aStarOrderedRing
.
Tags #
continuous functional calculus, normal, selfadjoint
instance
IsStarNormal.cfc_map
{R : Type u_1}
{A : Type u_2}
{p : A → Prop}
[CommSemiring R]
[StarRing R]
[MetricSpace R]
[TopologicalSemiring R]
[ContinuousStar R]
[TopologicalSpace A]
[Ring A]
[StarRing A]
[Algebra R A]
[ContinuousFunctionalCalculus R p]
(a : A)
(f : R → R)
:
IsStarNormal (cfc f a)
Equations
- ⋯ = ⋯
instance
IsStarNormal.instContinuousFunctionalCalculus
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
:
ContinuousFunctionalCalculus ℂ IsStarNormal
Equations
- ⋯ = ⋯
theorem
isSelfAdjoint_iff_isStarNormal_and_spectrumRestricts
{A : Type u_1}
[TopologicalSpace A]
[Ring A]
[StarRing A]
[Algebra ℂ A]
[ContinuousFunctionalCalculus ℂ IsStarNormal]
{a : A}
:
An element in a C⋆-algebra is selfadjoint if and only if it is normal and its spectrum is
contained in ℝ
.
theorem
IsSelfAdjoint.spectrumRestricts
{A : Type u_1}
[TopologicalSpace A]
[Ring A]
[StarRing A]
[Algebra ℂ A]
[ContinuousFunctionalCalculus ℂ IsStarNormal]
{a : A}
(ha : IsSelfAdjoint a)
:
theorem
SpectrumRestricts.isSelfAdjoint
{A : Type u_1}
[TopologicalSpace A]
[Ring A]
[StarRing A]
[Algebra ℂ A]
[ContinuousFunctionalCalculus ℂ IsStarNormal]
(a : A)
(ha : SpectrumRestricts a ⇑Complex.reCLM)
[IsStarNormal a]
:
A normal element whose ℂ
-spectrum is contained in ℝ
is selfadjoint.
theorem
IsSelfAdjoint.continuousFunctionalCalculus_of_compactSpace_spectrum
{A : Type u_1}
[TopologicalSpace A]
[Ring A]
[StarRing A]
[Algebra ℂ A]
[ContinuousFunctionalCalculus ℂ IsStarNormal]
[h : ∀ (x : A), CompactSpace ↑(spectrum ℂ x)]
:
ContinuousFunctionalCalculus ℝ IsSelfAdjoint
instance
IsSelfAdjoint.instContinuousFunctionalCalculus
{A : Type u_2}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
:
ContinuousFunctionalCalculus ℝ IsSelfAdjoint
Equations
- ⋯ = ⋯
theorem
unitary_iff_isStarNormal_and_spectrum_subset_circle
{A : Type u_1}
[TopologicalSpace A]
[Ring A]
[StarRing A]
[Algebra ℂ A]
[ContinuousFunctionalCalculus ℂ IsStarNormal]
{u : A}
:
theorem
mem_unitary_of_spectrum_subset_circle
{A : Type u_1}
[TopologicalSpace A]
[Ring A]
[StarRing A]
[Algebra ℂ A]
[ContinuousFunctionalCalculus ℂ IsStarNormal]
{u : A}
[IsStarNormal u]
(hu : spectrum ℂ u ⊆ ↑circle)
:
theorem
SpectrumRestricts.nnreal_iff_nnnorm
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
{a : A}
{t : NNReal}
(ha : IsSelfAdjoint a)
(ht : ‖a‖₊ ≤ t)
:
SpectrumRestricts a ⇑ContinuousMap.realToNNReal ↔ ‖(algebraMap ℝ A) ↑t - a‖₊ ≤ t
theorem
SpectrumRestricts.nnreal_add
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
{a : A}
{b : A}
(ha₁ : IsSelfAdjoint a)
(hb₁ : IsSelfAdjoint b)
(ha₂ : SpectrumRestricts a ⇑ContinuousMap.realToNNReal)
(hb₂ : SpectrumRestricts b ⇑ContinuousMap.realToNNReal)
:
theorem
IsSelfAdjoint.sq_spectrumRestricts
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
{a : A}
(ha : IsSelfAdjoint a)
:
theorem
SpectrumRestricts.eq_zero_of_neg
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
{a : A}
(ha : IsSelfAdjoint a)
(ha₁ : SpectrumRestricts a ⇑ContinuousMap.realToNNReal)
(ha₂ : SpectrumRestricts (-a) ⇑ContinuousMap.realToNNReal)
:
a = 0
theorem
SpectrumRestricts.smul_of_nonneg
{A : Type u_2}
[Ring A]
[Algebra ℝ A]
{a : A}
(ha : SpectrumRestricts a ⇑ContinuousMap.realToNNReal)
{r : ℝ}
(hr : 0 ≤ r)
:
theorem
spectrum_star_mul_self_nonneg
{A : Type u_1}
[NormedRing A]
[StarRing A]
[CstarRing A]
[CompleteSpace A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
{b : A}
(x : ℝ)
:
theorem
nonneg_iff_isSelfAdjoint_and_spectrumRestricts
{A : Type u_1}
[NormedRing A]
[CompleteSpace A]
[PartialOrder A]
[StarOrderedRing A]
[CstarRing A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
{a : A}
:
instance
Nonneg.instContinuousFunctionalCalculus
{A : Type u_1}
[NormedRing A]
[CompleteSpace A]
[PartialOrder A]
[StarOrderedRing A]
[CstarRing A]
[NormedAlgebra ℂ A]
[StarModule ℂ A]
:
ContinuousFunctionalCalculus NNReal fun (x : A) => 0 ≤ x
Equations
- ⋯ = ⋯