Documentation

Mathlib.CategoryTheory.Bicategory.Extension

Extensions and lifts in bicategories #

We introduce the concept of extensions and lifts within the bicategorical framework. These concepts are defined by commutative diagrams in the (1-)categorical context. Within the bicategorical framework, commutative diagrams are replaced by 2-morphisms. Depending on the orientation of the 2-morphisms, we define both left and right extensions (likewise for lifts). The use of left and right here is a common one in the theory of Kan extensions.

Implementation notes #

We define extensions and lifts as objects in certain comma categories (StructuredArrow for left, and CostructuredArrow for right). See the file CategoryTheory.StructuredArrow for properties about these categories. We introduce some intuitive aliases. For example, LeftExtension.extension is an alias for Comma.right.

References #

@[inline, reducible]
abbrev CategoryTheory.Bicategory.LeftExtension {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : a b) (g : a c) :
Type (max v w)

Triangle diagrams for (left) extensions.

  b
  △ \
  |   \ extension  △
f |     \          | unit
  |       ◿
  a - - - ▷ c
      g
Equations
Instances For
    @[inline, reducible]
    abbrev CategoryTheory.Bicategory.LeftExtension.extension {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} (t : CategoryTheory.Bicategory.LeftExtension f g) :
    b c

    The extension of g along f.

    Equations
    Instances For
      @[inline, reducible]

      The 2-morphism filling the triangle diagram.

      Equations
      Instances For
        @[inline, reducible]

        Construct a left extension from a 1-morphism and a 2-morphism.

        Equations
        Instances For
          Equations

          Whisker a 1-morphism to an extension.

            b
            △ \
            |   \ extension  △
          f |     \          | unit
            |       ◿
            a - - - ▷ c - - - ▷ x
                g         h
          
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Whiskering a 1-morphism is a functor.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Define a morphism between left extensions by cancelling the whiskered identities.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[inline, reducible]
                abbrev CategoryTheory.Bicategory.LeftLift {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : b a) (g : c a) :
                Type (max v w)

                Triangle diagrams for (left) lifts.

                            b
                          ◹ |
                   lift /   |      △
                      /     | f    | unit
                    /       ▽
                  c - - - ▷ a
                       g
                
                Equations
                Instances For
                  @[inline, reducible]
                  abbrev CategoryTheory.Bicategory.LeftLift.lift {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.LeftLift f g) :
                  c b

                  The lift of g along f.

                  Equations
                  Instances For
                    @[inline, reducible]

                    The 2-morphism filling the triangle diagram.

                    Equations
                    Instances For
                      @[inline, reducible]
                      abbrev CategoryTheory.Bicategory.LeftLift.mk {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (h : c b) (unit : g CategoryTheory.CategoryStruct.comp h f) :

                      Construct a left lift from a 1-morphism and a 2-morphism.

                      Equations
                      Instances For
                        @[inline, reducible]

                        To construct a morphism between left lifts, we need a 2-morphism between the lifts, and to check that it is compatible with the units.

                        Equations
                        Instances For
                          Equations

                          Whisker a 1-morphism to a lift.

                                              b
                                            ◹ |
                                     lift /   |      △
                                        /     | f    | unit
                                      /       ▽
                          x - - - ▷ c - - - ▷ a
                               h         g
                          
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            Whiskering a 1-morphism is a functor.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              Define a morphism between left lifts by cancelling the whiskered identities.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[inline, reducible]
                                abbrev CategoryTheory.Bicategory.RightExtension {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : a b) (g : a c) :
                                Type (max v w)

                                Triangle diagrams for (right) extensions.

                                  b
                                  △ \
                                  |   \ extension  | counit
                                f |     \          ▽
                                  |       ◿
                                  a - - - ▷ c
                                      g
                                
                                Equations
                                Instances For
                                  @[inline, reducible]

                                  The extension of g along f.

                                  Equations
                                  Instances For
                                    @[inline, reducible]

                                    The 2-morphism filling the triangle diagram.

                                    Equations
                                    Instances For
                                      @[inline, reducible]

                                      Construct a right extension from a 1-morphism and a 2-morphism.

                                      Equations
                                      Instances For
                                        Equations
                                        @[inline, reducible]
                                        abbrev CategoryTheory.Bicategory.RightLift {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} (f : b a) (g : c a) :
                                        Type (max v w)

                                        Triangle diagrams for (right) lifts.

                                                    b
                                                  ◹ |
                                           lift /   |      | counit
                                              /     | f    ▽
                                            /       ▽
                                          c - - - ▷ a
                                               g
                                        
                                        Equations
                                        Instances For
                                          @[inline, reducible]
                                          abbrev CategoryTheory.Bicategory.RightLift.lift {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.RightLift f g) :
                                          c b

                                          The lift of g along f.

                                          Equations
                                          Instances For
                                            @[inline, reducible]

                                            The 2-morphism filling the triangle diagram.

                                            Equations
                                            Instances For
                                              @[inline, reducible]
                                              abbrev CategoryTheory.Bicategory.RightLift.mk {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (h : c b) (counit : CategoryTheory.CategoryStruct.comp h f g) :

                                              Construct a right lift from a 1-morphism and a 2-morphism.

                                              Equations
                                              Instances For
                                                @[inline, reducible]

                                                To construct a morphism between right lifts, we need a 2-morphism between the lifts, and to check that it is compatible with the counits.

                                                Equations
                                                Instances For
                                                  Equations