Composition of effective epimorphisms #
This file provides EffectiveEpi
instances for certain compositions.
noncomputable def
CategoryTheory.effectiveEpiStructCompOfEffectiveEpiSplitEpi'
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{B : C}
{X : C}
{Y : C}
(f : X ⟶ B)
(g : Y ⟶ X)
(i : X ⟶ Y)
(hi : CategoryTheory.CategoryStruct.comp i g = CategoryTheory.CategoryStruct.id X)
[CategoryTheory.EffectiveEpi f]
:
A split epi followed by an effective epi is an effective epi. This version takes an explicit section
to the split epi, and is mainly used to define effectiveEpiStructCompOfEffectiveEpiSplitEpi
,
which takes a IsSplitEpi
instance instead.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.effectiveEpiStructCompOfEffectiveEpiSplitEpi
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{B : C}
{X : C}
{Y : C}
(f : X ⟶ B)
(g : Y ⟶ X)
[CategoryTheory.IsSplitEpi g]
[CategoryTheory.EffectiveEpi f]
:
A split epi followed by an effective epi is an effective epi.
Equations
Instances For
instance
CategoryTheory.instEffectiveEpiCompToCategoryStruct
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{B : C}
{X : C}
{Y : C}
(f : X ⟶ B)
(g : Y ⟶ X)
[CategoryTheory.IsSplitEpi g]
[CategoryTheory.EffectiveEpi f]
:
Equations
- ⋯ = ⋯
theorem
CategoryTheory.effectiveEpiFamilyStructCompIso_aux
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{B' : C}
{α : Type u_2}
(X : α → C)
(π : (a : α) → X a ⟶ B)
(i : B ⟶ B')
{W : C}
(e : (a : α) → X a ⟶ W)
(h : ∀ {Z : C} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂),
CategoryTheory.CategoryStruct.comp g₁ (CategoryTheory.CategoryStruct.comp (π a₁) i) = CategoryTheory.CategoryStruct.comp g₂ (CategoryTheory.CategoryStruct.comp (π a₂) i) →
CategoryTheory.CategoryStruct.comp g₁ (e a₁) = CategoryTheory.CategoryStruct.comp g₂ (e a₂))
{Z : C}
(a₁ : α)
(a₂ : α)
(g₁ : Z ⟶ X a₁)
(g₂ : Z ⟶ X a₂)
(hg : CategoryTheory.CategoryStruct.comp g₁ (π a₁) = CategoryTheory.CategoryStruct.comp g₂ (π a₂))
:
CategoryTheory.CategoryStruct.comp g₁ (e a₁) = CategoryTheory.CategoryStruct.comp g₂ (e a₂)
noncomputable def
CategoryTheory.effectiveEpiFamilyStructCompIso
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{B' : C}
{α : Type u_2}
(X : α → C)
(π : (a : α) → X a ⟶ B)
[CategoryTheory.EffectiveEpiFamily X π]
(i : B ⟶ B')
[CategoryTheory.IsIso i]
:
CategoryTheory.EffectiveEpiFamilyStruct X fun (a : α) => CategoryTheory.CategoryStruct.comp (π a) i
An effective epi family followed by an iso is an effective epi family.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.instEffectiveEpiFamilyCompToCategoryStruct
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{B' : C}
{α : Type u_2}
(X : α → C)
(π : (a : α) → X a ⟶ B)
[CategoryTheory.EffectiveEpiFamily X π]
(i : B ⟶ B')
[CategoryTheory.IsIso i]
:
CategoryTheory.EffectiveEpiFamily X fun (a : α) => CategoryTheory.CategoryStruct.comp (π a) i
Equations
- ⋯ = ⋯
theorem
CategoryTheory.effectiveEpiFamilyStructIsoComp_aux
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{α : Type u_2}
(X : α → C)
(Y : α → C)
(π : (a : α) → X a ⟶ B)
(i : (a : α) → Y a ⟶ X a)
[∀ (a : α), CategoryTheory.IsIso (i a)]
{W : C}
(e : (a : α) → Y a ⟶ W)
(h : ∀ {Z : C} (a₁ a₂ : α) (g₁ : Z ⟶ Y a₁) (g₂ : Z ⟶ Y a₂),
CategoryTheory.CategoryStruct.comp g₁ (CategoryTheory.CategoryStruct.comp (i a₁) (π a₁)) = CategoryTheory.CategoryStruct.comp g₂ (CategoryTheory.CategoryStruct.comp (i a₂) (π a₂)) →
CategoryTheory.CategoryStruct.comp g₁ (e a₁) = CategoryTheory.CategoryStruct.comp g₂ (e a₂))
{Z : C}
(a₁ : α)
(a₂ : α)
(g₁ : Z ⟶ X a₁)
(g₂ : Z ⟶ X a₂)
(hg : CategoryTheory.CategoryStruct.comp g₁ (π a₁) = CategoryTheory.CategoryStruct.comp g₂ (π a₂))
:
CategoryTheory.CategoryStruct.comp g₁
((fun (a : α) => CategoryTheory.CategoryStruct.comp (CategoryTheory.inv (i a)) (e a)) a₁) = CategoryTheory.CategoryStruct.comp g₂
((fun (a : α) => CategoryTheory.CategoryStruct.comp (CategoryTheory.inv (i a)) (e a)) a₂)
noncomputable def
CategoryTheory.effectiveEpiFamilyStructIsoComp
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{α : Type u_2}
(X : α → C)
(Y : α → C)
(π : (a : α) → X a ⟶ B)
[CategoryTheory.EffectiveEpiFamily X π]
(i : (a : α) → Y a ⟶ X a)
[∀ (a : α), CategoryTheory.IsIso (i a)]
:
CategoryTheory.EffectiveEpiFamilyStruct Y fun (a : α) => CategoryTheory.CategoryStruct.comp (i a) (π a)
An effective epi family preceded by a family of isos is an effective epi family.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.effectiveEpiFamilyIsoComp
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
{B : C}
{α : Type u_2}
(X : α → C)
(Y : α → C)
(π : (a : α) → X a ⟶ B)
[CategoryTheory.EffectiveEpiFamily X π]
(i : (a : α) → Y a ⟶ X a)
[∀ (a : α), CategoryTheory.IsIso (i a)]
:
CategoryTheory.EffectiveEpiFamily Y fun (a : α) => CategoryTheory.CategoryStruct.comp (i a) (π a)
Equations
- ⋯ = ⋯