Documentation

Mathlib.CategoryTheory.Subobject.FactorThru

Factoring through subobjects #

The predicate h : P.Factors f, for P : Subobject Y and f : X ⟶ Y asserts the existence of some P.factorThru f : X ⟶ (P : C) making the obvious diagram commute.

When f : X ⟶ Y and P : MonoOver Y, P.Factors f expresses that there exists a factorisation of f through P. Given h : P.Factors f, you can recover the morphism as P.factorThru f h.

Equations
Instances For

    P.factorThru f h provides a factorisation of f : X ⟶ Y through some P : MonoOver Y, given the evidence h : P.Factors f that such a factorisation exists.

    Equations
    Instances For

      When f : X ⟶ Y and P : Subobject Y, P.Factors f expresses that there exists a factorisation of f through P. Given h : P.Factors f, you can recover the morphism as P.factorThru f h.

      Equations
      Instances For
        theorem CategoryTheory.Subobject.factors_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (P : CategoryTheory.Subobject Y) (f : X Y) :
        CategoryTheory.Subobject.Factors P f CategoryTheory.MonoOver.Factors (CategoryTheory.Subobject.representative.obj P) f
        def CategoryTheory.Subobject.factorThru {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (P : CategoryTheory.Subobject Y) (f : X Y) (h : CategoryTheory.Subobject.Factors P f) :
        X CategoryTheory.Subobject.underlying.obj P

        P.factorThru f h provides a factorisation of f : X ⟶ Y through some P : Subobject Y, given the evidence h : P.Factors f that such a factorisation exists.

        Equations
        Instances For