Functors can be applied to Equiv
s. #
def Functor.mapEquiv (f : Type u → Type v) [functor f] [LawfulFunctor f] :
α ≃ β → f α ≃ f β
def
Functor.map_equiv
(f : Type u → Type v)
[Functor f]
[LawfulFunctor f]
{α : Type u}
{β : Type u}
(h : α ≃ β)
:
f α ≃ f β
Apply a functor to an Equiv
.
Equations
- Functor.map_equiv f h = { toFun := Functor.map ⇑h, invFun := Functor.map ⇑h.symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
Functor.map_equiv_apply
(f : Type u → Type v)
[Functor f]
[LawfulFunctor f]
{α : Type u}
{β : Type u}
(h : α ≃ β)
(x : f α)
:
(Functor.map_equiv f h) x = ⇑h <$> x
@[simp]
theorem
Functor.map_equiv_symm_apply
(f : Type u → Type v)
[Functor f]
[LawfulFunctor f]
{α : Type u}
{β : Type u}
(h : α ≃ β)
(y : f β)
:
(Functor.map_equiv f h).symm y = ⇑h.symm <$> y