Coexeter matrices #
This file defines some standard Coxeter matrices.
Main definitions #
CoxeterMatrix.Aₙ: Coxeter matrix for the symmetry group of the regular n-simplex.CoxeterMatrix.Bₙ: Coxeter matrix for the symmetry group of the regular n-hypercube and its dual, the regular n-orthoplex (or n-cross-polytope).CoxeterMatrix.Dₙ: Coxeter matrix for the symmetry group of the n-demicube.CoxeterMatrix.I₂ₘ: Coxeter matrix for the symmetry group of the regular (m + 2)-gon.CoxeterMatrix.E₆: Coxeter matrix for the symmetry group of the E₆ root polytope.CoxeterMatrix.E₇: Coxeter matrix for the symmetry group of the E₇ root polytope.CoxeterMatrix.E₈: Coxeter matrix for the symmetry group of the E₈ root polytope.CoxeterMatrix.F₄: Coxeter matrix for the symmetry group of the regular 4-polytope, the 24-cell.CoxeterMatrix.G₂: Coxeter matrix for the symmetry group of the regular hexagon.CoxeterMatrix.H₃: Coxeter matrix for the symmetry group of the regular dodecahedron and icosahedron.CoxeterMatrix.H₄: Coxeter matrix for the symmetry group of the regular 4-polytopes, the 120-cell and 600-cell.
@[inline, reducible]
The Coxeter matrix of family A(n).
The corresponding Coxeter-Dynkin diagram is:
o --- o --- o ⬝ ⬝ ⬝ ⬝ o --- o
Equations
Instances For
@[inline, reducible]
The Coxeter matrix of family Bₙ.
The corresponding Coxeter-Dynkin diagram is:
4
o --- o --- o ⬝ ⬝ ⬝ ⬝ o --- o
Equations
Instances For
@[inline, reducible]
The Coxeter matrix of family Dₙ.
The corresponding Coxeter-Dynkin diagram is:
o
\
o --- o ⬝ ⬝ ⬝ ⬝ o --- o
/
o
Equations
Instances For
The Coxeter matrix of system E₆.
The corresponding Coxeter-Dynkin diagram is:
o
|
o --- o --- o --- o --- o
Equations
- CoxeterMatrix.E₆ = Matrix.of ![![1, 2, 3, 2, 2, 2], ![2, 1, 2, 3, 2, 2], ![3, 2, 1, 3, 2, 2], ![2, 3, 3, 1, 3, 2], ![2, 2, 2, 3, 1, 3], ![2, 2, 2, 2, 3, 1]]
Instances For
The Coxeter matrix of system F₄.
The corresponding Coxeter-Dynkin diagram is:
4
o --- o --- o --- o
Equations
- CoxeterMatrix.F₄ = Matrix.of ![![1, 3, 2, 2], ![3, 1, 4, 2], ![2, 4, 1, 3], ![2, 2, 3, 1]]
Instances For
The Coxeter matrix of system G₂.
The corresponding Coxeter-Dynkin diagram is:
6
o --- o
Equations
- CoxeterMatrix.G₂ = Matrix.of ![![1, 6], ![6, 1]]
Instances For
The Coxeter matrix of system H₃.
The corresponding Coxeter-Dynkin diagram is:
5
o --- o --- o
Equations
- CoxeterMatrix.H₃ = Matrix.of ![![1, 3, 2], ![3, 1, 5], ![2, 5, 1]]
Instances For
The Coxeter matrix of system H₄.
The corresponding Coxeter-Dynkin diagram is:
5
o --- o --- o --- o
Equations
- CoxeterMatrix.H₄ = Matrix.of ![![1, 3, 2, 2], ![3, 1, 3, 2], ![2, 3, 1, 5], ![2, 2, 5, 1]]