Documentation

Mathlib.MeasureTheory.Decomposition.Lebesgue

Lebesgue decomposition #

This file proves the Lebesgue decomposition theorem. The Lebesgue decomposition theorem states that, given two σ-finite measures μ and ν, there exists a σ-finite measure ξ and a measurable function f such that μ = ξ + fν and ξ is mutually singular with respect to ν.

The Lebesgue decomposition provides the Radon-Nikodym theorem readily.

Main definitions #

Main results #

Tags #

Lebesgue decomposition theorem

A pair of measures μ and ν is said to HaveLebesgueDecomposition if there exists a measure ξ and a measurable function f, such that ξ is mutually singular with respect to ν and μ = ξ + ν.withDensity f.

Instances
    @[irreducible]

    If a pair of measures HaveLebesgueDecomposition, then singularPart chooses the measure from HaveLebesgueDecomposition, otherwise it returns the zero measure. For sigma-finite measures, μ = μ.singularPart ν + ν.withDensity (μ.rnDeriv ν).

    Equations
    Instances For
      @[irreducible]

      If a pair of measures HaveLebesgueDecomposition, then rnDeriv chooses the measurable function from HaveLebesgueDecomposition, otherwise it returns the zero function. For sigma-finite measures, μ = μ.singularPart ν + ν.withDensity (μ.rnDeriv ν).

      Equations
      Instances For
        theorem MeasureTheory.Measure.haveLebesgueDecomposition_spec {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [h : MeasureTheory.Measure.HaveLebesgueDecomposition μ ν] :
        Measurable (μ.rnDeriv ν) MeasureTheory.Measure.MutuallySingular (μ.singularPart ν) ν μ = μ.singularPart ν + ν.withDensity (μ.rnDeriv ν)
        theorem MeasureTheory.Measure.haveLebesgueDecomposition_add {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.Measure.HaveLebesgueDecomposition μ ν] :
        μ = μ.singularPart ν + ν.withDensity (μ.rnDeriv ν)
        theorem MeasureTheory.Measure.singularPart_add_rnDeriv {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.Measure.HaveLebesgueDecomposition μ ν] :
        μ.singularPart ν + ν.withDensity (μ.rnDeriv ν) = μ
        theorem MeasureTheory.Measure.rnDeriv_add_singularPart {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.Measure.HaveLebesgueDecomposition μ ν] :
        ν.withDensity (μ.rnDeriv ν) + μ.singularPart ν = μ
        theorem MeasureTheory.Measure.singularPart_le {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) :
        μ.singularPart ν μ
        theorem MeasureTheory.Measure.withDensity_rnDeriv_le {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) :
        ν.withDensity (μ.rnDeriv ν) μ
        theorem AEMeasurable.singularPart {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {β : Type u_3} :
        ∀ {x : MeasurableSpace β} {f : αβ}, AEMeasurable f μ∀ (ν : MeasureTheory.Measure α), AEMeasurable f (μ.singularPart ν)
        theorem AEMeasurable.withDensity_rnDeriv {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {β : Type u_3} :
        ∀ {x : MeasurableSpace β} {f : αβ}, AEMeasurable f μ∀ (ν : MeasureTheory.Measure α), AEMeasurable f (ν.withDensity (μ.rnDeriv ν))
        @[simp]
        theorem MeasureTheory.Measure.singularPart_zero {α : Type u_1} {m : MeasurableSpace α} (ν : MeasureTheory.Measure α) :
        0.singularPart ν = 0
        @[simp]
        theorem MeasureTheory.Measure.singularPart_withDensity {α : Type u_1} {m : MeasurableSpace α} (ν : MeasureTheory.Measure α) (f : αENNReal) :
        (ν.withDensity f).singularPart ν = 0
        @[simp]
        theorem MeasureTheory.Measure.singularPart_self {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) :
        μ.singularPart μ = 0
        theorem MeasureTheory.Measure.lintegral_rnDeriv_lt_top_of_measure_ne_top {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} (ν : MeasureTheory.Measure α) {s : Set α} (hs : μ s ) :
        ∫⁻ (x : α) in s, μ.rnDeriv ν xν <
        theorem MeasureTheory.Measure.lintegral_rnDeriv_lt_top {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] :
        ∫⁻ (x : α), μ.rnDeriv ν xν <
        theorem MeasureTheory.Measure.rnDeriv_lt_top {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.SigmaFinite μ] :
        ∀ᵐ (x : α) ∂ν, μ.rnDeriv ν x <

        The Radon-Nikodym derivative of a sigma-finite measure μ with respect to another measure ν is ν-almost everywhere finite.

        theorem MeasureTheory.Measure.rnDeriv_ne_top {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.SigmaFinite μ] :
        ∀ᵐ (x : α) ∂ν, μ.rnDeriv ν x
        theorem MeasureTheory.Measure.eq_singularPart {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {s : MeasureTheory.Measure α} {f : αENNReal} (hf : Measurable f) (hs : MeasureTheory.Measure.MutuallySingular s ν) (hadd : μ = s + ν.withDensity f) :
        s = μ.singularPart ν

        Given measures μ and ν, if s is a measure mutually singular to ν and f is a measurable function such that μ = s + fν, then s = μ.singularPart μ.

        This theorem provides the uniqueness of the singularPart in the Lebesgue decomposition theorem, while MeasureTheory.Measure.eq_rnDeriv provides the uniqueness of the rnDeriv.

        theorem MeasureTheory.Measure.singularPart_smul {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) (r : NNReal) :
        (r μ).singularPart ν = r μ.singularPart ν
        theorem MeasureTheory.Measure.singularPart_smul_right {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) (r : NNReal) (hr : r 0) :
        μ.singularPart (r ν) = μ.singularPart ν
        theorem MeasureTheory.Measure.singularPart_add {α : Type u_1} {m : MeasurableSpace α} (μ₁ : MeasureTheory.Measure α) (μ₂ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure α) [MeasureTheory.Measure.HaveLebesgueDecomposition μ₁ ν] [MeasureTheory.Measure.HaveLebesgueDecomposition μ₂ ν] :
        (μ₁ + μ₂).singularPart ν = μ₁.singularPart ν + μ₂.singularPart ν
        theorem MeasureTheory.Measure.eq_withDensity_rnDeriv {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {s : MeasureTheory.Measure α} {f : αENNReal} (hf : Measurable f) (hs : MeasureTheory.Measure.MutuallySingular s ν) (hadd : μ = s + ν.withDensity f) :
        ν.withDensity f = ν.withDensity (μ.rnDeriv ν)

        Given measures μ and ν, if s is a measure mutually singular to ν and f is a measurable function such that μ = s + fν, then f = μ.rnDeriv ν.

        This theorem provides the uniqueness of the rnDeriv in the Lebesgue decomposition theorem, while MeasureTheory.Measure.eq_singularPart provides the uniqueness of the singularPart. Here, the uniqueness is given in terms of the measures, while the uniqueness in terms of the functions is given in eq_rnDeriv.

        theorem MeasureTheory.Measure.eq_withDensity_rnDeriv₀ {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} {s : MeasureTheory.Measure α} {f : αENNReal} (hf : AEMeasurable f ν) (hs : MeasureTheory.Measure.MutuallySingular s ν) (hadd : μ = s + ν.withDensity f) :
        ν.withDensity f = ν.withDensity (μ.rnDeriv ν)
        theorem MeasureTheory.Measure.eq_rnDeriv₀ {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite ν] {s : MeasureTheory.Measure α} {f : αENNReal} (hf : AEMeasurable f ν) (hs : MeasureTheory.Measure.MutuallySingular s ν) (hadd : μ = s + ν.withDensity f) :
        theorem MeasureTheory.Measure.eq_rnDeriv {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite ν] {s : MeasureTheory.Measure α} {f : αENNReal} (hf : Measurable f) (hs : MeasureTheory.Measure.MutuallySingular s ν) (hadd : μ = s + ν.withDensity f) :

        Given measures μ and ν, if s is a measure mutually singular to ν and f is a measurable function such that μ = s + fν, then f = μ.rnDeriv ν.

        This theorem provides the uniqueness of the rnDeriv in the Lebesgue decomposition theorem, while MeasureTheory.Measure.eq_singularPart provides the uniqueness of the singularPart. Here, the uniqueness is given in terms of the functions, while the uniqueness in terms of the functions is given in eq_withDensity_rnDeriv.

        theorem MeasureTheory.Measure.rnDeriv_withDensity₀ {α : Type u_1} {m : MeasurableSpace α} (ν : MeasureTheory.Measure α) [MeasureTheory.SigmaFinite ν] {f : αENNReal} (hf : AEMeasurable f ν) :
        (ν.withDensity f).rnDeriv ν =ᶠ[MeasureTheory.Measure.ae ν] f

        The Radon-Nikodym derivative of f ν with respect to ν is f.

        theorem MeasureTheory.Measure.rnDeriv_withDensity {α : Type u_1} {m : MeasurableSpace α} (ν : MeasureTheory.Measure α) [MeasureTheory.SigmaFinite ν] {f : αENNReal} (hf : Measurable f) :
        (ν.withDensity f).rnDeriv ν =ᶠ[MeasureTheory.Measure.ae ν] f

        The Radon-Nikodym derivative of f ν with respect to ν is f.

        The Radon-Nikodym derivative of the restriction of a measure to a measurable set is the indicator function of this set.

        Radon-Nikodym derivative of the scalar multiple of a measure. See also rnDeriv_smul_left', which requires sigma-finite ν and μ.

        Radon-Nikodym derivative of the scalar multiple of a measure. See also rnDeriv_smul_left_of_ne_top', which requires sigma-finite ν and μ.

        Radon-Nikodym derivative with respect to the scalar multiple of a measure. See also rnDeriv_smul_right', which requires sigma-finite ν and μ.

        Radon-Nikodym derivative with respect to the scalar multiple of a measure. See also rnDeriv_smul_right_of_ne_top', which requires sigma-finite ν and μ.

        Radon-Nikodym derivative of a sum of two measures. See also rnDeriv_add', which requires sigma-finite ν₁, ν₂ and μ.

        If two finite measures μ and ν are not mutually singular, there exists some ε > 0 and a measurable set E, such that ν(E) > 0 and E is positive with respect to μ - εν.

        This lemma is useful for the Lebesgue decomposition theorem.

        Given two measures μ and ν, measurableLE μ ν is the set of measurable functions f, such that, for all measurable sets A, ∫⁻ x in A, f x ∂μ ≤ ν A.

        This is useful for the Lebesgue decomposition theorem.

        Equations
        Instances For
          theorem MeasureTheory.Measure.LebesgueDecomposition.iSup_succ_eq_sup {α : Sort u_3} (f : αENNReal) (m : ) (a : α) :
          ⨆ (k : ), ⨆ (_ : k m + 1), f k a = f (Nat.succ m) a ⨆ (k : ), ⨆ (_ : k m), f k a
          theorem MeasureTheory.Measure.LebesgueDecomposition.iSup_monotone {α : Type u_3} (f : αENNReal) :
          Monotone fun (n : ) (x : α) => ⨆ (k : ), ⨆ (_ : k n), f k x
          theorem MeasureTheory.Measure.LebesgueDecomposition.iSup_monotone' {α : Type u_3} (f : αENNReal) (x : α) :
          Monotone fun (n : ) => ⨆ (k : ), ⨆ (_ : k n), f k x
          theorem MeasureTheory.Measure.LebesgueDecomposition.iSup_le_le {α : Type u_3} (f : αENNReal) (n : ) (k : ) (hk : k n) :
          f k fun (x : α) => ⨆ (k : ), ⨆ (_ : k n), f k x

          measurableLEEval μ ν is the set of ∫⁻ x, f x ∂μ for all f ∈ measurableLE μ ν.

          Equations
          Instances For

            Any pair of finite measures μ and ν, HaveLebesgueDecomposition. That is to say, there exist a measure ξ and a measurable function f, such that ξ is mutually singular with respect to ν and μ = ξ + ν.withDensity f.

            This is not an instance since this is also shown for the more general σ-finite measures with MeasureTheory.Measure.haveLebesgueDecomposition_of_sigmaFinite.

            The Lebesgue decomposition theorem: Any pair of σ-finite measures μ and ν HaveLebesgueDecomposition. That is to say, there exist a measure ξ and a measurable function f, such that ξ is mutually singular with respect to ν and μ = ξ + ν.withDensity f

            Equations
            • =

            Radon-Nikodym derivative of the scalar multiple of a measure. See also rnDeriv_smul_left, which has no hypothesis on μ but requires finite ν.

            Radon-Nikodym derivative of the scalar multiple of a measure. See also rnDeriv_smul_left_of_ne_top, which has no hypothesis on μ but requires finite ν.

            Radon-Nikodym derivative with respect to the scalar multiple of a measure. See also rnDeriv_smul_right, which has no hypothesis on μ but requires finite ν.

            Radon-Nikodym derivative with respect to the scalar multiple of a measure. See also rnDeriv_smul_right_of_ne_top, which has no hypothesis on μ but requires finite ν.

            theorem MeasureTheory.Measure.rnDeriv_add' {α : Type u_1} {m : MeasurableSpace α} (ν₁ : MeasureTheory.Measure α) (ν₂ : MeasureTheory.Measure α) (μ : MeasureTheory.Measure α) [MeasureTheory.SigmaFinite ν₁] [MeasureTheory.SigmaFinite ν₂] [MeasureTheory.SigmaFinite μ] :
            (ν₁ + ν₂).rnDeriv μ =ᶠ[MeasureTheory.Measure.ae μ] ν₁.rnDeriv μ + ν₂.rnDeriv μ

            Radon-Nikodym derivative of a sum of two measures. See also rnDeriv_add, which has no hypothesis on μ but requires finite ν₁ and ν₂.