Documentation

Mathlib.RingTheory.Ideal.AssociatedPrime

Associated primes of a module #

We provide the definition and related lemmas about associated primes of modules.

Main definition #

Main results #

Todo #

Generalize this to a non-commutative setting once there are annihilator for non-commutative rings.

def IsAssociatedPrime {R : Type u_1} [CommRing R] (I : Ideal R) (M : Type u_2) [AddCommGroup M] [Module R M] :

IsAssociatedPrime I M if the prime ideal I is the annihilator of some x : M.

Equations
Instances For
    def associatedPrimes (R : Type u_1) [CommRing R] (M : Type u_2) [AddCommGroup M] [Module R M] :

    The set of associated primes of a module.

    Equations
    Instances For
      theorem IsAssociatedPrime.isPrime {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_2} [AddCommGroup M] [Module R M] (h : IsAssociatedPrime I M) :
      theorem IsAssociatedPrime.map_of_injective {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] (f : M →ₗ[R] M') (h : IsAssociatedPrime I M) (hf : Function.Injective f) :
      theorem LinearEquiv.isAssociatedPrime_iff {R : Type u_1} [CommRing R] {I : Ideal R} {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] (l : M ≃ₗ[R] M') :
      theorem associatedPrimes.subset_of_injective {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] (f : M →ₗ[R] M') (hf : Function.Injective f) :
      theorem LinearEquiv.AssociatedPrimes.eq {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] (l : M ≃ₗ[R] M') :
      theorem IsAssociatedPrime.eq_radical {R : Type u_1} [CommRing R] {I : Ideal R} {J : Ideal R} (hI : Ideal.IsPrimary I) (h : IsAssociatedPrime J (R I)) :