Documentation

Mathlib.SetTheory.Ordinal.Notation

Ordinal notation #

Constructive ordinal arithmetic for ordinals below ε₀.

We define a type ONote, with constructors 0 : ONote and ONote.oadd e n a representing ω ^ e * n + a. We say that o is in Cantor normal form - ONote.NF o - if either o = 0 or o = ω ^ e * n + a with a < ω ^ e and a in Cantor normal form.

The type NONote is the type of ordinals below ε₀ in Cantor normal form. Various operations (addition, subtraction, multiplication, power function) are defined on ONote and NONote.

inductive ONote :

Recursive definition of an ordinal notation. zero denotes the ordinal 0, and oadd e n a is intended to refer to ω^e * n + a. For this to be valid Cantor normal form, we must have the exponents decrease to the right, but we can't state this condition until we've defined repr, so it is a separate definition NF.

Instances For

    Notation for 0

    Equations
    @[simp]

    Notation for 1

    Equations

    Notation for ω

    Equations
    Instances For
      noncomputable def ONote.repr :

      The ordinal denoted by a notation

      Equations
      Instances For
        def ONote.toStringAux1 (e : ONote) (n : ) (s : String) :

        Auxiliary definition to print an ordinal notation

        Equations
        Instances For
          def ONote.repr' (prec : ) :

          Print an ordinal notation

          Equations
          Instances For
            Equations
            theorem ONote.lt_def {x : ONote} {y : ONote} :

            Convert a Nat into an ordinal

            Equations
            Instances For
              @[simp]
              theorem ONote.ofNat_zero :
              0 = 0
              @[simp]
              theorem ONote.ofNat_succ (n : ) :
              instance ONote.nat (n : ) :
              Equations
              @[simp]
              theorem ONote.ofNat_one :
              1 = 1
              @[simp]
              theorem ONote.repr_ofNat (n : ) :
              ONote.repr n = n
              theorem ONote.repr_one :
              ONote.repr 1 = 1
              theorem ONote.oadd_pos (e : ONote) (n : ℕ+) (a : ONote) :
              0 < ONote.oadd e n a

              Compare ordinal notations

              Equations
              Instances For
                theorem ONote.eq_of_cmp_eq {o₁ : ONote} {o₂ : ONote} :
                ONote.cmp o₁ o₂ = Ordering.eqo₁ = o₂
                inductive ONote.NFBelow :

                NFBelow o b says that o is a normal form ordinal notation satisfying repr o < ω ^ b.

                Instances For
                  class ONote.NF (o : ONote) :

                  A normal form ordinal notation has the form

                  ω ^ a₁ * n₁ + ω ^ a₂ * n₂ + ... ω ^ aₖ * nₖ where a₁ > a₂ > ... > aₖ and all the aᵢ are also in normal form.

                  We will essentially only be interested in normal form ordinal notations, but to avoid complicating the algorithms we define everything over general ordinal notations and only prove correctness with normal form as an invariant.

                  Instances
                    theorem ONote.NFBelow.oadd {e : ONote} {n : ℕ+} {a : ONote} {b : Ordinal.{0}} :
                    theorem ONote.NFBelow.fst {e : ONote} {n : ℕ+} {a : ONote} {b : Ordinal.{0}} (h : ONote.NFBelow (ONote.oadd e n a) b) :
                    theorem ONote.NF.fst {e : ONote} {n : ℕ+} {a : ONote} :
                    theorem ONote.NFBelow.snd {e : ONote} {n : ℕ+} {a : ONote} {b : Ordinal.{0}} (h : ONote.NFBelow (ONote.oadd e n a) b) :
                    theorem ONote.NF.snd' {e : ONote} {n : ℕ+} {a : ONote} :
                    theorem ONote.NF.snd {e : ONote} {n : ℕ+} {a : ONote} (h : ONote.NF (ONote.oadd e n a)) :
                    theorem ONote.NF.oadd {e : ONote} {a : ONote} (h₁ : ONote.NF e) (n : ℕ+) (h₂ : ONote.NFBelow a (ONote.repr e)) :
                    instance ONote.NF.oadd_zero (e : ONote) (n : ℕ+) [h : ONote.NF e] :
                    Equations
                    • =
                    theorem ONote.NFBelow.lt {e : ONote} {n : ℕ+} {a : ONote} {b : Ordinal.{0}} (h : ONote.NFBelow (ONote.oadd e n a) b) :
                    theorem ONote.NF.zero_of_zero {e : ONote} {n : ℕ+} {a : ONote} (h : ONote.NF (ONote.oadd e n a)) (e0 : e = 0) :
                    a = 0
                    theorem ONote.NFBelow.mono {o : ONote} {b₁ : Ordinal.{0}} {b₂ : Ordinal.{0}} (bb : b₁ b₂) (h : ONote.NFBelow o b₁) :
                    theorem ONote.NF.below_of_lt {e : ONote} {n : ℕ+} {a : ONote} {b : Ordinal.{0}} (H : ONote.repr e < b) :
                    instance ONote.nf_ofNat (n : ) :
                    Equations
                    • =
                    Equations
                    theorem ONote.oadd_lt_oadd_1 {e₁ : ONote} {n₁ : ℕ+} {o₁ : ONote} {e₂ : ONote} {n₂ : ℕ+} {o₂ : ONote} (h₁ : ONote.NF (ONote.oadd e₁ n₁ o₁)) (h : e₁ < e₂) :
                    ONote.oadd e₁ n₁ o₁ < ONote.oadd e₂ n₂ o₂
                    theorem ONote.oadd_lt_oadd_2 {e : ONote} {o₁ : ONote} {o₂ : ONote} {n₁ : ℕ+} {n₂ : ℕ+} (h₁ : ONote.NF (ONote.oadd e n₁ o₁)) (h : n₁ < n₂) :
                    ONote.oadd e n₁ o₁ < ONote.oadd e n₂ o₂
                    theorem ONote.oadd_lt_oadd_3 {e : ONote} {n : ℕ+} {a₁ : ONote} {a₂ : ONote} (h : a₁ < a₂) :
                    ONote.oadd e n a₁ < ONote.oadd e n a₂

                    TopBelow b o asserts that the largest exponent in o, if it exists, is less than b. This is an auxiliary definition for decidability of NF.

                    Equations
                    Instances For
                      Equations
                      • One or more equations did not get rendered due to their size.
                      def ONote.addAux (e : ONote) (n : ℕ+) (o : ONote) :

                      Auxiliary definition for add

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        def ONote.add :
                        ONoteONoteONote

                        Addition of ordinal notations (correct only for normal input)

                        Equations
                        Instances For
                          @[simp]
                          theorem ONote.zero_add (o : ONote) :
                          0 + o = o
                          theorem ONote.oadd_add (e : ONote) (n : ℕ+) (a : ONote) (o : ONote) :
                          ONote.oadd e n a + o = ONote.addAux e n (a + o)
                          def ONote.sub :
                          ONoteONoteONote

                          Subtraction of ordinal notations (correct only for normal input)

                          Equations
                          Instances For
                            theorem ONote.add_nfBelow {b : Ordinal.{0}} {o₁ : ONote} {o₂ : ONote} :
                            ONote.NFBelow o₁ bONote.NFBelow o₂ bONote.NFBelow (o₁ + o₂) b
                            instance ONote.add_nf (o₁ : ONote) (o₂ : ONote) [ONote.NF o₁] [ONote.NF o₂] :
                            ONote.NF (o₁ + o₂)
                            Equations
                            • =
                            @[simp]
                            theorem ONote.repr_add (o₁ : ONote) (o₂ : ONote) [ONote.NF o₁] [ONote.NF o₂] :
                            ONote.repr (o₁ + o₂) = ONote.repr o₁ + ONote.repr o₂
                            theorem ONote.sub_nfBelow {o₁ : ONote} {o₂ : ONote} {b : Ordinal.{0}} :
                            ONote.NFBelow o₁ bONote.NF o₂ONote.NFBelow (o₁ - o₂) b
                            instance ONote.sub_nf (o₁ : ONote) (o₂ : ONote) [ONote.NF o₁] [ONote.NF o₂] :
                            ONote.NF (o₁ - o₂)
                            Equations
                            • =
                            @[simp]
                            theorem ONote.repr_sub (o₁ : ONote) (o₂ : ONote) [ONote.NF o₁] [ONote.NF o₂] :
                            ONote.repr (o₁ - o₂) = ONote.repr o₁ - ONote.repr o₂
                            def ONote.mul :
                            ONoteONoteONote

                            Multiplication of ordinal notations (correct only for normal input)

                            Equations
                            Instances For
                              theorem ONote.oadd_mul (e₁ : ONote) (n₁ : ℕ+) (a₁ : ONote) (e₂ : ONote) (n₂ : ℕ+) (a₂ : ONote) :
                              ONote.oadd e₁ n₁ a₁ * ONote.oadd e₂ n₂ a₂ = if e₂ = 0 then ONote.oadd e₁ (n₁ * n₂) a₁ else ONote.oadd (e₁ + e₂) n₂ (ONote.oadd e₁ n₁ a₁ * a₂)
                              theorem ONote.oadd_mul_nfBelow {e₁ : ONote} {n₁ : ℕ+} {a₁ : ONote} {b₁ : Ordinal.{0}} (h₁ : ONote.NFBelow (ONote.oadd e₁ n₁ a₁) b₁) {o₂ : ONote} {b₂ : Ordinal.{0}} :
                              ONote.NFBelow o₂ b₂ONote.NFBelow (ONote.oadd e₁ n₁ a₁ * o₂) (ONote.repr e₁ + b₂)
                              instance ONote.mul_nf (o₁ : ONote) (o₂ : ONote) [ONote.NF o₁] [ONote.NF o₂] :
                              ONote.NF (o₁ * o₂)
                              Equations
                              • =
                              @[simp]
                              theorem ONote.repr_mul (o₁ : ONote) (o₂ : ONote) [ONote.NF o₁] [ONote.NF o₂] :
                              ONote.repr (o₁ * o₂) = ONote.repr o₁ * ONote.repr o₂

                              Calculate division and remainder of o mod ω. split' o = (a, n) means o = ω * a + n.

                              Equations
                              Instances For

                                Calculate division and remainder of o mod ω. split o = (a, n) means o = a + n, where ω ∣ a.

                                Equations
                                Instances For
                                  def ONote.scale (x : ONote) :

                                  scale x o is the ordinal notation for ω ^ x * o.

                                  Equations
                                  Instances For

                                    mulNat o n is the ordinal notation for o * n.

                                    Equations
                                    Instances For
                                      def ONote.opowAux (e : ONote) (a0 : ONote) (a : ONote) :
                                      ONote

                                      Auxiliary definition to compute the ordinal notation for the ordinal exponentiation in opow

                                      Equations
                                      Instances For
                                        def ONote.opowAux2 (o₂ : ONote) (o₁ : ONote × ) :

                                        Auxiliary definition to compute the ordinal notation for the ordinal exponentiation in opow

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          def ONote.opow (o₁ : ONote) (o₂ : ONote) :

                                          opow o₁ o₂ calculates the ordinal notation for the ordinal exponential o₁ ^ o₂.

                                          Equations
                                          Instances For
                                            theorem ONote.opow_def (o₁ : ONote) (o₂ : ONote) :
                                            o₁ ^ o₂ = ONote.opowAux2 o₂ (ONote.split o₁)
                                            theorem ONote.split_eq_scale_split' {o : ONote} {o' : ONote} {m : } [ONote.NF o] :
                                            ONote.split' o = (o', m)ONote.split o = (ONote.scale 1 o', m)
                                            theorem ONote.nf_repr_split' {o : ONote} {o' : ONote} {m : } [ONote.NF o] :
                                            theorem ONote.scale_eq_mul (x : ONote) [ONote.NF x] (o : ONote) [ONote.NF o] :
                                            instance ONote.nf_scale (x : ONote) [ONote.NF x] (o : ONote) [ONote.NF o] :
                                            Equations
                                            • =
                                            theorem ONote.nf_repr_split {o : ONote} {o' : ONote} {m : } [ONote.NF o] (h : ONote.split o = (o', m)) :
                                            theorem ONote.split_dvd {o : ONote} {o' : ONote} {m : } [ONote.NF o] (h : ONote.split o = (o', m)) :
                                            theorem ONote.split_add_lt {o : ONote} {e : ONote} {n : ℕ+} {a : ONote} {m : } [ONote.NF o] (h : ONote.split o = (ONote.oadd e n a, m)) :
                                            @[simp]
                                            theorem ONote.mulNat_eq_mul (n : ) (o : ONote) :
                                            ONote.mulNat o n = o * n
                                            instance ONote.nf_mulNat (o : ONote) [ONote.NF o] (n : ) :
                                            Equations
                                            • =
                                            instance ONote.nf_opowAux (e : ONote) (a0 : ONote) (a : ONote) [ONote.NF e] [ONote.NF a0] [ONote.NF a] (k : ) (m : ) :
                                            ONote.NF (ONote.opowAux e a0 a k m)
                                            Equations
                                            • =
                                            instance ONote.nf_opow (o₁ : ONote) (o₂ : ONote) [ONote.NF o₁] [ONote.NF o₂] :
                                            ONote.NF (o₁ ^ o₂)
                                            Equations
                                            • =
                                            theorem ONote.scale_opowAux (e : ONote) (a0 : ONote) (a : ONote) [ONote.NF e] [ONote.NF a0] [ONote.NF a] (k : ) (m : ) :
                                            theorem ONote.repr_opow_aux₁ {e : ONote} {a : ONote} [Ne : ONote.NF e] [Na : ONote.NF a] {a' : Ordinal.{0}} (e0 : ONote.repr e 0) (h : a' < Ordinal.omega ^ ONote.repr e) (aa : ONote.repr a = a') (n : ℕ+) :
                                            theorem ONote.repr_opow_aux₂ {a0 : ONote} {a' : ONote} [N0 : ONote.NF a0] [Na' : ONote.NF a'] (m : ) (d : Ordinal.omega ONote.repr a') (e0 : ONote.repr a0 0) (h : ONote.repr a' + m < Ordinal.omega ^ ONote.repr a0) (n : ℕ+) (k : ) :
                                            let R := ONote.repr (ONote.opowAux 0 a0 (ONote.oadd a0 n a' * m) k m); (k 0R < (Ordinal.omega ^ ONote.repr a0) ^ Order.succ k) (Ordinal.omega ^ ONote.repr a0) ^ k * (Ordinal.omega ^ ONote.repr a0 * n + ONote.repr a') + R = (Ordinal.omega ^ ONote.repr a0 * n + ONote.repr a' + m) ^ Order.succ k
                                            theorem ONote.repr_opow (o₁ : ONote) (o₂ : ONote) [ONote.NF o₁] [ONote.NF o₂] :
                                            ONote.repr (o₁ ^ o₂) = ONote.repr o₁ ^ ONote.repr o₂

                                            Given an ordinal, returns inl none for 0, inl (some a) for a+1, and inr f for a limit ordinal a, where f i is a sequence converging to a.

                                            Equations
                                            Instances For

                                              The property satisfied by fundamentalSequence o:

                                              • inl none means o = 0
                                              • inl (some a) means o = succ a
                                              • inr f means o is a limit ordinal and f is a strictly increasing sequence which converges to o
                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                theorem ONote.fundamentalSequenceProp_inr (o : ONote) (f : ONote) :
                                                ONote.FundamentalSequenceProp o (Sum.inr f) Ordinal.IsLimit (ONote.repr o) (∀ (i : ), f i < f (i + 1) f i < o (ONote.NF oONote.NF (f i))) a < ONote.repr o, ∃ (i : ), a < ONote.repr (f i)

                                                The fast growing hierarchy for ordinal notations < ε₀. This is a sequence of functions ℕ → ℕ indexed by ordinals, with the definition:

                                                • f_0(n) = n + 1
                                                • f_(α+1)(n) = f_α^[n](n)
                                                • f_α(n) = f_(α[n])(n) where α is a limit ordinal and α[i] is the fundamental sequence converging to α
                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  theorem ONote.fastGrowing_def {o : ONote} {x : Option ONote (ONote)} (e : ONote.fundamentalSequence o = x) :
                                                  ONote.fastGrowing o = match (motive := (x : Option ONote (ONote)) → ONote.FundamentalSequenceProp o x) x, with | Sum.inl none, x => Nat.succ | Sum.inl (some a), x => fun (i : ) => (ONote.fastGrowing a)^[i] i | Sum.inr f, x => fun (i : ) => ONote.fastGrowing (f i) i
                                                  @[simp]
                                                  theorem ONote.fastGrowing_one :
                                                  ONote.fastGrowing 1 = fun (n : ) => 2 * n
                                                  @[simp]
                                                  theorem ONote.fastGrowing_two :
                                                  ONote.fastGrowing 2 = fun (n : ) => 2 ^ n * n

                                                  We can extend the fast growing hierarchy one more step to ε₀ itself, using ω^(ω^...^ω^0) as the fundamental sequence converging to ε₀ (which is not an onote). Extending the fast growing hierarchy beyond this requires a definition of fundamental sequence for larger ordinals.

                                                  Equations
                                                  Instances For

                                                    The type of normal ordinal notations. (It would have been nicer to define this right in the inductive type, but NF o requires repr which requires ONote, so all these things would have to be defined at once, which messes up the VM representation.)

                                                    Equations
                                                    Instances For
                                                      instance NONote.NF (o : NONote) :
                                                      Equations
                                                      • =
                                                      def NONote.mk (o : ONote) [h : ONote.NF o] :

                                                      Construct a NONote from an ordinal notation (and infer normality)

                                                      Equations
                                                      Instances For
                                                        noncomputable def NONote.repr (o : NONote) :

                                                        The ordinal represented by an ordinal notation. (This function is noncomputable because ordinal arithmetic is noncomputable. In computational applications NONote can be used exclusively without reference to ordinal, but this function allows for correctness results to be stated.)

                                                        Equations
                                                        Instances For
                                                          Equations
                                                          Equations
                                                          theorem NONote.lt_wf :
                                                          WellFounded fun (x x_1 : NONote) => x < x_1

                                                          Convert a natural number to an ordinal notation

                                                          Equations
                                                          Instances For
                                                            def NONote.cmp (a : NONote) (b : NONote) :

                                                            Compare ordinal notations

                                                            Equations
                                                            Instances For
                                                              def NONote.below (a : NONote) (b : NONote) :

                                                              Asserts that repr a < ω ^ repr b. Used in NONote.recOn

                                                              Equations
                                                              Instances For
                                                                def NONote.oadd (e : NONote) (n : ℕ+) (a : NONote) (h : NONote.below a e) :

                                                                The oadd pseudo-constructor for NONote

                                                                Equations
                                                                Instances For
                                                                  def NONote.recOn {C : NONoteSort u_1} (o : NONote) (H0 : C 0) (H1 : (e : NONote) → (n : ℕ+) → (a : NONote) → (h : NONote.below a e) → C eC aC (NONote.oadd e n a h)) :
                                                                  C o

                                                                  This is a recursor-like theorem for NONote suggesting an inductive definition, which can't actually be defined this way due to conflicting dependencies.

                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For

                                                                    Addition of ordinal notations

                                                                    Equations

                                                                    Subtraction of ordinal notations

                                                                    Equations

                                                                    Multiplication of ordinal notations

                                                                    Equations
                                                                    def NONote.opow (x : NONote) (y : NONote) :

                                                                    Exponentiation of ordinal notations

                                                                    Equations
                                                                    Instances For