Documentation
Init.Data.Nat.Gcd
Google site search
Init.Data.Nat.Gcd
source
Imports
Init.Data.Nat.Div
Imported by
Nat.gcd
Nat.gcd_zero_left
Nat.gcd_succ
Nat.gcd_one_left
Nat.gcd_zero_right
Nat.gcd_self
source
@[extern lean_nat_gcd]
def
Nat.gcd
(a :
Nat
)
(b :
Nat
)
:
Nat
Equations
Nat.gcd
a
b
=
WellFounded.fix
Nat.gcd.proof_1
Nat.gcdF
a
b
source
@[simp]
theorem
Nat.gcd_zero_left
(y :
Nat
)
:
Nat.gcd
0
y
=
y
source
theorem
Nat.gcd_succ
(x :
Nat
)
(y :
Nat
)
:
Nat.gcd
(
Nat.succ
x
)
y
=
Nat.gcd
(
y
%
Nat.succ
x
) (
Nat.succ
x
)
source
@[simp]
theorem
Nat.gcd_one_left
(n :
Nat
)
:
Nat.gcd
1
n
=
1
source
@[simp]
theorem
Nat.gcd_zero_right
(n :
Nat
)
:
Nat.gcd
n
0
=
n
source
@[simp]
theorem
Nat.gcd_self
(n :
Nat
)
:
Nat.gcd
n
n
=
n