Equations
- Lean.instCoeStringName_1 = { coe := Lean.Name.mkSimple }
Equations
@[inline]
Equations
Equations
- Lean.NameMap.instEmptyCollectionNameMap α = { emptyCollection := Lean.mkNameMap α }
Equations
- Lean.NameMap.instInhabitedNameMap α = { default := ∅ }
Equations
- Lean.NameMap.insert m n a = Lean.RBMap.insert m n a
Equations
@[inline]
Equations
- Lean.NameMap.find? m n = Lean.RBMap.find? m n
instance
Lean.NameMap.instForInNameMapProdName
{α : Type}
{m : Type u_1 → Type u_2}
:
ForIn m (Lean.NameMap α) (Lean.Name × α)
Equations
- Lean.NameMap.instForInNameMapProdName = inferInstanceAs (ForIn m (Lean.RBMap Lean.Name α Lean.Name.quickCmp) (Lean.Name × α))
Equations
- Lean.NameSet.instEmptyCollectionNameSet = { emptyCollection := Lean.NameSet.empty }
Equations
- Lean.NameSet.instInhabitedNameSet = { default := Lean.NameSet.empty }
Equations
- Lean.NameSet.insert s n = Lean.RBTree.insert s n
Equations
Equations
- Lean.NameSet.instForInNameSetName = inferInstanceAs (ForIn m (Lean.RBTree Lean.Name Lean.Name.quickCmp) Lean.Name)
@[inline]
Equations
- Lean.NameSSet.empty = Lean.SSet.empty
Equations
- Lean.NameSSet.instEmptyCollectionNameSSet = { emptyCollection := Lean.NameSSet.empty }
Equations
- Lean.NameSSet.instInhabitedNameSSet = { default := Lean.NameSSet.empty }
@[inline]
Equations
- Lean.NameSSet.insert s n = Lean.SSet.insert s n
@[inline]
Equations
@[inline]
Equations
- Lean.NameHashSet.empty = Lean.HashSet.empty
Equations
- Lean.NameHashSet.instEmptyCollectionNameHashSet = { emptyCollection := Lean.NameHashSet.empty }
Equations
- Lean.NameHashSet.instInhabitedNameHashSet = { default := ∅ }
Equations
Equations
Equations
- Lean.MacroScopesView.isPrefixOf v₁ v₂ = (Lean.Name.isPrefixOf v₁.name v₂.name && v₁.scopes == v₂.scopes && v₁.mainModule == v₂.mainModule && v₁.imported == v₂.imported)
Equations
- Lean.MacroScopesView.isSuffixOf v₁ v₂ = (Lean.Name.isSuffixOf v₁.name v₂.name && v₁.scopes == v₂.scopes && v₁.mainModule == v₂.mainModule && v₁.imported == v₂.imported)