Documentation

Mathlib.Algebra.Lie.Weights.Basic

Weight spaces of Lie modules of nilpotent Lie algebras #

Just as a key tool when studying the behaviour of a linear operator is to decompose the space on which it acts into a sum of (generalised) eigenspaces, a key tool when studying a representation M of Lie algebra L is to decompose M into a sum of simultaneous eigenspaces of x as x ranges over L. These simultaneous generalised eigenspaces are known as the weight spaces of M.

When L is nilpotent, it follows from the binomial theorem that weight spaces are Lie submodules.

Basic definitions and properties of the above ideas are provided in this file.

Main definitions #

References #

Tags #

lie character, eigenvalue, eigenspace, weight, weight vector, root, root vector

theorem LieModule.weight_vector_multiplication {R : Type u_2} {L : Type u_3} [CommRing R] [LieRing L] [LieAlgebra R L] (M₁ : Type u_5) (M₂ : Type u_6) (M₃ : Type u_7) [AddCommGroup M₁] [Module R M₁] [LieRingModule L M₁] [LieModule R L M₁] [AddCommGroup M₂] [Module R M₂] [LieRingModule L M₂] [LieModule R L M₂] [AddCommGroup M₃] [Module R M₃] [LieRingModule L M₃] [LieModule R L M₃] (g : TensorProduct R M₁ M₂ →ₗ⁅R,L M₃) (χ₁ : R) (χ₂ : R) (x : L) :

See also bourbaki1975b Chapter VII §1.1, Proposition 2 (ii).

theorem LieModule.lie_mem_maxGenEigenspace_toEndomorphism {R : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {χ₁ : R} {χ₂ : R} {x : L} {y : L} {m : M} (hy : y Module.End.maximalGeneralizedEigenspace ((LieModule.toEndomorphism R L L) x) χ₁) (hm : m Module.End.maximalGeneralizedEigenspace ((LieModule.toEndomorphism R L M) x) χ₂) :
def LieModule.weightSpaceOf {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (χ : R) (x : L) :

If M is a representation of a nilpotent Lie algebra L, χ is a scalar, and x : L, then weightSpaceOf M χ x is the maximal generalized χ-eigenspace of the action of x on M.

It is a Lie submodule because L is nilpotent.

Equations
Instances For
    theorem LieModule.mem_weightSpaceOf {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (χ : R) (x : L) (m : M) :
    m LieModule.weightSpaceOf M χ x ∃ (k : ), (((LieModule.toEndomorphism R L M) x - χ 1) ^ k) m = 0
    theorem LieModule.coe_weightSpaceOf_zero {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x : L) :
    def LieModule.weightSpace {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (χ : LR) :

    If M is a representation of a nilpotent Lie algebra L and χ : L → R is a family of scalars, then weightSpace M χ is the intersection of the maximal generalized χ x-eigenspaces of the action of x on M as x ranges over L.

    It is a Lie submodule because L is nilpotent.

    Equations
    Instances For
      theorem LieModule.mem_weightSpace {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (χ : LR) (m : M) :
      m LieModule.weightSpace M χ ∀ (x : L), ∃ (k : ), (((LieModule.toEndomorphism R L M) x - χ x 1) ^ k) m = 0
      theorem LieModule.weightSpace_le_weightSpaceOf {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x : L) (χ : LR) :
      theorem LieModule.coe_weightSpace_of_top {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (χ : LR) :
      theorem LieModule.exists_weightSpace_le_ker_of_isNoetherian {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [IsNoetherian R M] (χ : LR) (x : L) :
      ∃ (k : ), (LieModule.weightSpace M χ) LinearMap.ker (((LieModule.toEndomorphism R L M) x - (algebraMap R (Module.End R M)) (χ x)) ^ k)
      theorem LieModule.isNilpotent_toEndomorphism_sub_algebraMap {R : Type u_2} {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [IsNoetherian R M] (χ : LR) (x : L) :

      A (nilpotent) Lie algebra acts nilpotently on the zero weight space of a Noetherian Lie module.

      def LieModule.posFittingCompOf (R : Type u_2) {L : Type u_3} (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x : L) :

      If M is a representation of a nilpotent Lie algebra L, and x : L, then posFittingCompOf R M x is the infimum of the decreasing system range φₓ ⊇ range φₓ² ⊇ range φₓ³ ⊇ ⋯ where φₓ : End R M := toEndomorphism R L M x. We call this the "positive Fitting component" because with appropriate assumptions (e.g., R is a field and M is finite-dimensional) φₓ induces the so-called Fitting decomposition: M = M₀ ⊕ M₁ where M₀ = weightSpaceOf M 0 x and M₁ = posFittingCompOf R M x.

      It is a Lie submodule because L is nilpotent.

      Equations
      Instances For
        theorem LieModule.mem_posFittingCompOf (R : Type u_2) {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x : L) (m : M) :
        m LieModule.posFittingCompOf R M x ∀ (k : ), ∃ (n : M), ((LieModule.toEndomorphism R L M) x ^ k) n = m
        def LieModule.posFittingComp (R : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :

        If M is a representation of a nilpotent Lie algebra L with coefficients in R, then posFittingComp R L M is the span of the positive Fitting components of the action of x on M, as x ranges over L.

        It is a Lie submodule because L is nilpotent.

        Equations
        Instances For
          theorem LieModule.mem_posFittingComp (R : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (m : M) :
          theorem LieModule.map_posFittingComp_le {R : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {M₂ : Type u_5} [AddCommGroup M₂] [Module R M₂] [LieRingModule L M₂] [LieModule R L M₂] (f : M →ₗ⁅R,L M₂) :
          theorem LieModule.map_weightSpace_le {R : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {M₂ : Type u_5} [AddCommGroup M₂] [Module R M₂] [LieRingModule L M₂] [LieModule R L M₂] {χ : LR} (f : M →ₗ⁅R,L M₂) :
          theorem LieModule.comap_weightSpace_eq_of_injective {R : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {M₂ : Type u_5} [AddCommGroup M₂] [Module R M₂] [LieRingModule L M₂] [LieModule R L M₂] {χ : LR} {f : M →ₗ⁅R,L M₂} (hf : Function.Injective f) :
          theorem LieModule.map_weightSpace_eq_of_injective {R : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {M₂ : Type u_5} [AddCommGroup M₂] [Module R M₂] [LieRingModule L M₂] [LieModule R L M₂] {χ : LR} {f : M →ₗ⁅R,L M₂} (hf : Function.Injective f) :
          theorem LieModule.map_weightSpace_eq {R : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {M₂ : Type u_5} [AddCommGroup M₂] [Module R M₂] [LieRingModule L M₂] [LieModule R L M₂] {χ : LR} (e : M ≃ₗ⁅R,L M₂) :
          theorem LieModule.map_posFittingComp_eq {R : Type u_2} {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {M₂ : Type u_5} [AddCommGroup M₂] [Module R M₂] [LieRingModule L M₂] [LieModule R L M₂] (e : M ≃ₗ⁅R,L M₂) :

          This is the Fitting decomposition of the Lie module M.

          theorem LieModule.disjoint_weightSpaceOf (R : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [NoZeroSMulDivisors R M] {x : L} {φ₁ : R} {φ₂ : R} (h : φ₁ φ₂) :
          theorem LieModule.disjoint_weightSpace (R : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [NoZeroSMulDivisors R M] {χ₁ : LR} {χ₂ : LR} (h : χ₁ χ₂) :
          theorem LieModule.injOn_weightSpace (R : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [NoZeroSMulDivisors R M] :
          Set.InjOn (fun (χ : LR) => LieModule.weightSpace M χ) {χ : LR | LieModule.weightSpace M χ }
          @[inline, reducible]
          noncomputable abbrev LieModule.weight (R : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [NoZeroSMulDivisors R M] [IsNoetherian R M] :
          Finset (LR)

          The collection of weights of a Noetherian Lie module, bundled as a Finset.

          Equations
          Instances For
            class LieModule.IsTriangularizable (R : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :

            A Lie module M of a Lie algebra L is triangularizable if the endomorhpism of M defined by any x : L is triangularizable.

            Instances
              @[simp]
              theorem LieModule.iSup_weightSpaceOf_eq_top (R : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsNilpotent R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [LieModule.IsTriangularizable R L M] (x : L) :
              ⨆ (φ : R), LieModule.weightSpaceOf M φ x =
              Equations
              • =
              theorem LieModule.iSup_weightSpace_eq_top (K : Type u_1) (L : Type u_3) (M : Type u_4) [LieRing L] [AddCommGroup M] [LieRingModule L M] [Field K] [LieAlgebra K L] [Module K M] [LieModule K L M] [LieAlgebra.IsNilpotent K L] [FiniteDimensional K M] [LieModule.IsTriangularizable K L M] :
              ⨆ (χ : LK), LieModule.weightSpace M χ =