Documentation

Mathlib.Algebra.Lie.Weights.Cartan

Weights and roots of Lie modules and Lie algebras with respect to Cartan subalgebras #

Given a Lie algebra L which is not necessarily nilpotent, it may be useful to study its representations by restricting them to a nilpotent subalgebra (e.g., a Cartan subalgebra). In the particular case when we view L as a module over itself via the adjoint action, the weight spaces of L restricted to a nilpotent subalgebra are known as root spaces.

Basic definitions and properties of the above ideas are provided in this file.

Main definitions #

noncomputable def LieModule.IsWeight {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (χ : LieAlgebra.LieCharacter R H) :

Given a Lie module M of a Lie algebra L, a weight of M with respect to a nilpotent subalgebra H ⊆ L is a Lie character whose corresponding weight space is non-empty.

Equations
Instances For

    For a non-trivial nilpotent Lie module over a nilpotent Lie algebra, the zero character is a weight with respect to the Lie subalgebra.

    @[inline, reducible]
    noncomputable abbrev LieAlgebra.rootSpace {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (χ : HR) :
    LieSubmodule R (H) L

    Given a nilpotent Lie subalgebra H ⊆ L, the root space of a map χ : H → R is the weight space of L regarded as a module of H via the adjoint action.

    Equations
    Instances For
      @[inline, reducible]
      noncomputable abbrev LieAlgebra.IsRoot {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (χ : LieAlgebra.LieCharacter R H) :

      A root of a Lie algebra L with respect to a nilpotent subalgebra H ⊆ L is a weight of L, regarded as a module of H via the adjoint action.

      Equations
      Instances For
        theorem LieAlgebra.lie_mem_weightSpace_of_mem_weightSpace {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] {H : LieSubalgebra R L} [LieAlgebra.IsNilpotent R H] {M : Type u_3} [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {χ₁ : HR} {χ₂ : HR} {x : L} {m : M} (hx : x LieAlgebra.rootSpace H χ₁) (hm : m LieModule.weightSpace M χ₂) :
        x, m LieModule.weightSpace M (χ₁ + χ₂)
        noncomputable def LieAlgebra.rootSpaceWeightSpaceProductAux (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {χ₁ : HR} {χ₂ : HR} {χ₃ : HR} (hχ : χ₁ + χ₂ = χ₃) :
        (LieAlgebra.rootSpace H χ₁) →ₗ[R] (LieModule.weightSpace M χ₂) →ₗ[R] (LieModule.weightSpace M χ₃)

        Auxiliary definition for rootSpaceWeightSpaceProduct, which is close to the deterministic timeout limit.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable def LieAlgebra.rootSpaceWeightSpaceProduct (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (χ₁ : HR) (χ₂ : HR) (χ₃ : HR) (hχ : χ₁ + χ₂ = χ₃) :
          TensorProduct R (LieAlgebra.rootSpace H χ₁) (LieModule.weightSpace M χ₂) →ₗ⁅R,H (LieModule.weightSpace M χ₃)

          Given a nilpotent Lie subalgebra H ⊆ L together with χ₁ χ₂ : H → R, there is a natural R-bilinear product of root vectors and weight vectors, compatible with the actions of H.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem LieAlgebra.coe_rootSpaceWeightSpaceProduct_tmul (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (χ₁ : HR) (χ₂ : HR) (χ₃ : HR) (hχ : χ₁ + χ₂ = χ₃) (x : (LieAlgebra.rootSpace H χ₁)) (m : (LieModule.weightSpace M χ₂)) :
            ((LieAlgebra.rootSpaceWeightSpaceProduct R L H M χ₁ χ₂ χ₃ ) (x ⊗ₜ[R] m)) = x, m
            theorem LieAlgebra.mapsTo_toEndomorphism_weightSpace_add_of_mem_rootSpace (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (α : HR) (χ : HR) {x : L} (hx : x LieAlgebra.rootSpace H α) :
            noncomputable def LieAlgebra.rootSpaceProduct (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (χ₁ : HR) (χ₂ : HR) (χ₃ : HR) (hχ : χ₁ + χ₂ = χ₃) :
            TensorProduct R (LieAlgebra.rootSpace H χ₁) (LieAlgebra.rootSpace H χ₂) →ₗ⁅R,H (LieAlgebra.rootSpace H χ₃)

            Given a nilpotent Lie subalgebra H ⊆ L together with χ₁ χ₂ : H → R, there is a natural R-bilinear product of root vectors, compatible with the actions of H.

            Equations
            Instances For
              theorem LieAlgebra.rootSpaceProduct_tmul (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (χ₁ : HR) (χ₂ : HR) (χ₃ : HR) (hχ : χ₁ + χ₂ = χ₃) (x : (LieAlgebra.rootSpace H χ₁)) (y : (LieAlgebra.rootSpace H χ₂)) :
              ((LieAlgebra.rootSpaceProduct R L H χ₁ χ₂ χ₃ ) (x ⊗ₜ[R] y)) = x, y
              noncomputable def LieAlgebra.zeroRootSubalgebra (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] :

              Given a nilpotent Lie subalgebra H ⊆ L, the root space of the zero map 0 : H → R is a Lie subalgebra of L.

              Equations
              Instances For
                @[simp]
                theorem LieAlgebra.coe_zeroRootSubalgebra (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] :
                theorem LieAlgebra.mem_zeroRootSubalgebra (R : Type u_1) (L : Type u_2) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) [LieAlgebra.IsNilpotent R H] (x : L) :
                x LieAlgebra.zeroRootSubalgebra R L H ∀ (y : H), ∃ (k : ), ((LieModule.toEndomorphism R (H) L) y ^ k) x = 0

                If the zero root subalgebra of a nilpotent Lie subalgebra H is just H then H is a Cartan subalgebra.

                When L is Noetherian, it follows from Engel's theorem that the converse holds. See LieAlgebra.zeroRootSubalgebra_eq_iff_is_cartan

                noncomputable def LieAlgebra.rootSpaceProductNegSelf {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] {H : LieSubalgebra R L} [LieAlgebra.IsNilpotent R H] [LieSubalgebra.IsCartanSubalgebra H] [IsNoetherian R L] (α : HR) :

                Given a root α, the Lie bracket restricted to the product of the root space of α and takes value in the Cartan subalgebra.

                When L is semisimple, the image of this map is one-dimensional and is spanned by the corresponding coroot.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem LieAlgebra.coe_rootSpaceProductNegSelf_apply {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] {H : LieSubalgebra R L} [LieAlgebra.IsNilpotent R H] [LieSubalgebra.IsCartanSubalgebra H] [IsNoetherian R L] (α : HR) (x : (LieAlgebra.rootSpace H α)) (y : (LieAlgebra.rootSpace H (-α))) :