Documentation

Mathlib.FieldTheory.AbelRuffini

The Abel-Ruffini Theorem #

This file proves one direction of the Abel-Ruffini theorem, namely that if an element is solvable by radicals, then its minimal polynomial has solvable Galois group.

Main definitions #

Main results #

theorem gal_C_isSolvable {F : Type u_1} [Field F] (x : F) :
IsSolvable (Polynomial.Gal (Polynomial.C x))
theorem gal_X_isSolvable {F : Type u_1} [Field F] :
IsSolvable (Polynomial.Gal Polynomial.X)
theorem gal_X_sub_C_isSolvable {F : Type u_1} [Field F] (x : F) :
IsSolvable (Polynomial.Gal (Polynomial.X - Polynomial.C x))
theorem gal_X_pow_isSolvable {F : Type u_1} [Field F] (n : ) :
IsSolvable (Polynomial.Gal (Polynomial.X ^ n))
theorem gal_X_pow_sub_one_isSolvable {F : Type u_1} [Field F] (n : ) :
IsSolvable (Polynomial.Gal (Polynomial.X ^ n - 1))
theorem gal_X_pow_sub_C_isSolvable_aux {F : Type u_1} [Field F] (n : ) (a : F) (h : Polynomial.Splits (RingHom.id F) (Polynomial.X ^ n - 1)) :
IsSolvable (Polynomial.Gal (Polynomial.X ^ n - Polynomial.C a))
theorem splits_X_pow_sub_one_of_X_pow_sub_C {F : Type u_3} [Field F] {E : Type u_4} [Field E] (i : F →+* E) (n : ) {a : F} (ha : a 0) (h : Polynomial.Splits i (Polynomial.X ^ n - Polynomial.C a)) :
Polynomial.Splits i (Polynomial.X ^ n - 1)
theorem gal_X_pow_sub_C_isSolvable {F : Type u_1} [Field F] (n : ) (x : F) :
IsSolvable (Polynomial.Gal (Polynomial.X ^ n - Polynomial.C x))
inductive IsSolvableByRad (F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] :
EProp

Inductive definition of solvable by radicals

Instances For
    def solvableByRad (F : Type u_1) [Field F] (E : Type u_2) [Field E] [Algebra F E] :

    The intermediate field of solvable-by-radicals elements

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem solvableByRad.induction {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (P : (solvableByRad F E)Prop) (base : ∀ (α : F), P ((algebraMap F (solvableByRad F E)) α)) (add : ∀ (α β : (solvableByRad F E)), P αP βP (α + β)) (neg : ∀ (α : (solvableByRad F E)), P αP (-α)) (mul : ∀ (α β : (solvableByRad F E)), P αP βP (α * β)) (inv : ∀ (α : (solvableByRad F E)), P αP α⁻¹) (rad : ∀ (α : (solvableByRad F E)) (n : ), n 0P (α ^ n)P α) (α : (solvableByRad F E)) :
      P α
      theorem solvableByRad.isIntegral {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (α : (solvableByRad F E)) :
      def solvableByRad.P {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (α : (solvableByRad F E)) :

      The statement to be proved inductively

      Equations
      Instances For
        theorem solvableByRad.induction3 {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {α : (solvableByRad F E)} {n : } (hn : n 0) (hα : solvableByRad.P (α ^ n)) :

        An auxiliary induction lemma, which is generalized by solvableByRad.isSolvable.

        theorem solvableByRad.induction2 {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {α : (solvableByRad F E)} {β : (solvableByRad F E)} {γ : (solvableByRad F E)} (hγ : γ Fα, β) (hα : solvableByRad.P α) (hβ : solvableByRad.P β) :

        An auxiliary induction lemma, which is generalized by solvableByRad.isSolvable.

        theorem solvableByRad.induction1 {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {α : (solvableByRad F E)} {β : (solvableByRad F E)} (hβ : β Fα) (hα : solvableByRad.P α) :

        An auxiliary induction lemma, which is generalized by solvableByRad.isSolvable.

        theorem solvableByRad.isSolvable {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] (α : (solvableByRad F E)) :
        theorem solvableByRad.isSolvable' {F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {α : E} {q : Polynomial F} (q_irred : Irreducible q) (q_aeval : (Polynomial.aeval α) q = 0) (hα : IsSolvableByRad F α) :

        Abel-Ruffini Theorem (one direction): An irreducible polynomial with an IsSolvableByRad root has solvable Galois group