Documentation

Mathlib.NumberTheory.NumberField.Embeddings

Embeddings of number fields #

This file defines the embeddings of a number field into an algebraic closed field.

Main Definitions and Results #

Tags #

number field, embeddings, places, infinite places

There are finitely many embeddings of a number field.

Equations
  • One or more equations did not get rendered due to their size.

The number of embeddings of a number field is equal to its finrank.

theorem NumberField.Embeddings.range_eval_eq_rootSet_minpoly (K : Type u_1) (A : Type u_2) [Field K] [NumberField K] [Field A] [Algebra A] [IsAlgClosed A] (x : K) :
(Set.range fun (φ : K →+* A) => φ x) = Polynomial.rootSet (minpoly x) A

Let A be an algebraically closed field and let x ∈ K, with K a number field. The images of x by the embeddings of K in A are exactly the roots in A of the minimal polynomial of x over .

theorem NumberField.Embeddings.finite_of_norm_le (K : Type u_1) [Field K] [NumberField K] (A : Type u_2) [NormedField A] [IsAlgClosed A] [NormedAlgebra A] (B : ) :
Set.Finite {x : K | IsIntegral x ∀ (φ : K →+* A), φ x B}

Let B be a real number. The set of algebraic integers in K whose conjugates are all smaller in norm than B is finite.

theorem NumberField.Embeddings.pow_eq_one_of_norm_eq_one (K : Type u_1) [Field K] [NumberField K] (A : Type u_2) [NormedField A] [IsAlgClosed A] [NormedAlgebra A] {x : K} (hxi : IsIntegral x) (hx : ∀ (φ : K →+* A), φ x = 1) :
∃ (n : ) (_ : 0 < n), x ^ n = 1

An algebraic integer whose conjugates are all of norm one is a root of unity.

def NumberField.place {K : Type u_1} [Field K] {A : Type u_2} [NormedDivisionRing A] [Nontrivial A] (φ : K →+* A) :

An embedding into a normed division ring defines a place of K

Equations
Instances For
    @[simp]
    theorem NumberField.place_apply {K : Type u_1} [Field K] {A : Type u_2} [NormedDivisionRing A] [Nontrivial A] (φ : K →+* A) (x : K) :
    @[reducible]

    The conjugate of a complex embedding as a complex embedding.

    Equations
    Instances For
      @[reducible]

      An embedding into is real if it is fixed by complex conjugation.

      Equations
      Instances For

        A real embedding as a ring homomorphism from K to .

        Equations
        Instances For
          theorem NumberField.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] [IsGalois k K] (φ : K →+* ) (ψ : K →+* ) (h : RingHom.comp φ (algebraMap k K) = RingHom.comp ψ (algebraMap k K)) :
          ∃ (σ : K ≃ₐ[k] K), RingHom.comp φ (AlgEquiv.symm σ) = ψ
          def NumberField.ComplexEmbedding.IsConj {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] (φ : K →+* ) (σ : K ≃ₐ[k] K) :

          IsConj φ σ states that σ : K ≃ₐ[k] K is the conjugation under the embedding φ : K →+* ℂ.

          Equations
          Instances For
            theorem NumberField.ComplexEmbedding.IsConj.eq {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ : K ≃ₐ[k] K} (h : NumberField.ComplexEmbedding.IsConj φ σ) (x : K) :
            φ (σ x) = star (φ x)
            theorem NumberField.ComplexEmbedding.IsConj.ext {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ₁ : K ≃ₐ[k] K} {σ₂ : K ≃ₐ[k] K} (h₁ : NumberField.ComplexEmbedding.IsConj φ σ₁) (h₂ : NumberField.ComplexEmbedding.IsConj φ σ₂) :
            σ₁ = σ₂
            theorem NumberField.ComplexEmbedding.IsConj.ext_iff {K : Type u_1} [Field K] {k : Type u_2} [Field k] [Algebra k K] {φ : K →+* } {σ₁ : K ≃ₐ[k] K} {σ₂ : K ≃ₐ[k] K} (h₁ : NumberField.ComplexEmbedding.IsConj φ σ₁) :
            def NumberField.InfinitePlace (K : Type u_2) [Field K] :
            Type u_2

            An infinite place of a number field K is a place associated to a complex embedding.

            Equations
            Instances For
              noncomputable def NumberField.InfinitePlace.mk {K : Type u_2} [Field K] (φ : K →+* ) :

              Return the infinite place defined by a complex embedding φ.

              Equations
              Instances For
                Equations
                • NumberField.InfinitePlace.instFunLikeInfinitePlaceReal = { coe := fun (w : NumberField.InfinitePlace K) (x : K) => w x, coe_injective' := }
                @[simp]
                theorem NumberField.InfinitePlace.apply {K : Type u_2} [Field K] (φ : K →+* ) (x : K) :
                (NumberField.InfinitePlace.mk φ) x = Complex.abs (φ x)

                For an infinite place w, return an embedding φ such that w = infinite_place φ .

                Equations
                Instances For
                  theorem NumberField.InfinitePlace.eq_iff_eq {K : Type u_2} [Field K] (x : K) (r : ) :
                  (∀ (w : NumberField.InfinitePlace K), w x = r) ∀ (φ : K →+* ), φ x = r
                  theorem NumberField.InfinitePlace.le_iff_le {K : Type u_2} [Field K] (x : K) (r : ) :
                  (∀ (w : NumberField.InfinitePlace K), w x r) ∀ (φ : K →+* ), φ x r
                  theorem NumberField.InfinitePlace.pos_iff {K : Type u_2} [Field K] {w : NumberField.InfinitePlace K} {x : K} :
                  0 < w x x 0

                  An infinite place is real if it is defined by a real embedding.

                  Equations
                  Instances For

                    An infinite place is complex if it is defined by a complex (ie. not real) embedding.

                    Equations
                    Instances For

                      The real embedding associated to a real infinite place.

                      Equations
                      Instances For
                        noncomputable def NumberField.InfinitePlace.mult {K : Type u_2} [Field K] (w : NumberField.InfinitePlace K) :

                        The multiplicity of an infinite place, that is the number of distinct complex embeddings that define it, see card_filter_mk_eq.

                        Equations
                        Instances For
                          Equations

                          The map from real embeddings to real infinite places as an equiv

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            The map from nonreal embeddings to complex infinite places

                            Equations
                            • NumberField.InfinitePlace.mkComplex = Subtype.map NumberField.InfinitePlace.mk
                            Instances For
                              @[simp]
                              theorem NumberField.InfinitePlace.mkReal_coe {K : Type u_2} [Field K] (φ : { φ : K →+* // NumberField.ComplexEmbedding.IsReal φ }) :
                              (NumberField.InfinitePlace.mkReal φ) = NumberField.InfinitePlace.mk φ

                              The infinite part of the product formula : for x ∈ K, we have Π_w ‖x‖_w = |norm(x)| where ‖·‖_w is the normalized absolute value for w.

                              theorem NumberField.InfinitePlace.one_le_of_lt_one {K : Type u_2} [Field K] [NumberField K] {w : NumberField.InfinitePlace K} {a : (NumberField.ringOfIntegers K)} (ha : a 0) (h : ∀ ⦃z : NumberField.InfinitePlace K⦄, z wz a < 1) :
                              1 w a
                              theorem NumberField.is_primitive_element_of_infinitePlace_lt {K : Type u_2} [Field K] [NumberField K] {x : (NumberField.ringOfIntegers K)} {w : NumberField.InfinitePlace K} (h₁ : x 0) (h₂ : ∀ ⦃w' : NumberField.InfinitePlace K⦄, w' ww' x < 1) (h₃ : NumberField.InfinitePlace.IsReal w |((NumberField.InfinitePlace.embedding w) x).re| < 1) :
                              x =
                              @[inline, reducible]
                              noncomputable abbrev NumberField.InfinitePlace.NrRealPlaces (K : Type u_2) [Field K] [NumberField K] :

                              The number of infinite real places of the number field K.

                              Equations
                              Instances For
                                @[inline, reducible]
                                noncomputable abbrev NumberField.InfinitePlace.NrComplexPlaces (K : Type u_2) [Field K] [NumberField K] :

                                The number of infinite complex places of the number field K.

                                Equations
                                Instances For

                                  The restriction of an infinite place along an embedding.

                                  Equations
                                  Instances For

                                    The action of the galois group on infinite places.

                                    Equations
                                    • NumberField.InfinitePlace.instMulActionAlgEquivToCommSemiringToSemifieldToSemiringToDivisionSemiringToSemifieldInfinitePlaceToMonoidToDivInvMonoidAut = MulAction.mk
                                    @[simp]
                                    theorem NumberField.InfinitePlace.smul_apply {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] (σ : K ≃ₐ[k] K) (w : NumberField.InfinitePlace K) (x : K) :
                                    (σ w) x = w ((AlgEquiv.symm σ) x)
                                    theorem NumberField.InfinitePlace.ComplexEmbedding.exists_comp_symm_eq_of_comp_eq {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] [IsGalois k K] (φ : K →+* ) (ψ : K →+* ) (h : RingHom.comp φ (algebraMap k K) = RingHom.comp ψ (algebraMap k K)) :
                                    ∃ (σ : K ≃ₐ[k] K), RingHom.comp φ (AlgEquiv.symm σ) = ψ

                                    The orbits of infinite places under the action of the galois group are indexed by the infinite places of the base field.

                                    Equations
                                    Instances For
                                      theorem NumberField.InfinitePlace.orbitRelEquiv_apply_mk'' {k : Type u_1} [Field k] {K : Type u_2} [Field K] [Algebra k K] [IsGalois k K] (w : NumberField.InfinitePlace K) :
                                      NumberField.InfinitePlace.orbitRelEquiv (Quotient.mk'' w) = NumberField.InfinitePlace.comap w (algebraMap k K)

                                      An infinite place is unramified in a field extension if the restriction has the same multiplicity.

                                      Equations
                                      Instances For

                                        A infinite place of the base field is unramified in a field extension if every infinite place over it is unramified.

                                        Equations
                                        Instances For
                                          class IsUnramifiedAtInfinitePlaces (k : Type u_1) [Field k] (K : Type u_2) [Field K] [Algebra k K] :

                                          A field extension is unramified at infinite places if every infinite place is unramified.

                                          Instances
                                            theorem IsUnramifiedAtInfinitePlaces.bot (k : Type u_1) [Field k] (K : Type u_2) [Field K] (F : Type u_3) [Field F] [Algebra k K] [Algebra k F] [Algebra K F] [IsScalarTower k K F] [h₁ : IsUnramifiedAtInfinitePlaces k F] (h : Algebra.IsAlgebraic K F) :