ANALYSIS I: Real Analysis Construction of the field of real numbers and the least upper-bound property. Review of sets, countable & uncountable sets. Metric Spaces: topological properties, the topology of Euclidean space. Sequences and series. Continuity: definition and basic theorems, uniform continuity, the Intermediate Value Theorem. Differentiability on the real line: definition, the Mean Value Theorem. The Riemann-Stieltjes integral: definition and examples, the Fundamental Theorem of Calculus. Sequences and series of functions, uniform convergence, the Weierstrass Approximation Theorem. Differentiability in higher dimensions: motivations, the total derivative, and basic theorems. Partial derivatives, characterization of continuously-differentiable functions. Higher- order derivatives. Recommended Books

- Rudin, W., Principles of Mathematical Analysis, McGraw-Hill, 1985.
- Apostol, T. M., Mathematical Analysis, Narosa, 1987.

Last updated: 22 Sep 2021