We study risk-sensitive control of continuous time Markov chains taking values in discrete state space. We study both finite and infinite horizon problems. In the finite horizon problem we characterise the value function via HJB equation and obtain an optimal Markov control. We do the same for infinite horizon discounted cost case. In the infinite horizon average cost case we establish the existence of an optimal stationary control under certain Lyapunov condition. We also develop a policy iteration algorithm for finding an optimal control.

- All seminars.
- Seminars for 2012

Last updated: 06 Mar 2020