We consider a fourth order traveling wave equation associated to the Suspension Bridge Problem (SBP). This equations are modeled by the traveling wave behavior on the Narrows Tacoma and the Golden Gate bridge. We prove existence of homoclinic solutions when the wave speed is small. We will also discuss the associated fourth order Liouville theorem to the problem and possible link with the De Giorgi’s conjecture. This is an attempt to prove the McKenna-Walter conjecture which is open for the last two decades.

- All seminars.
- Seminars for 2016

Last updated: 17 Jan 2019