Terence Tao posted on his blog a question of Apoorva Khare, asking whether the free group on two generators has a length function $l: F_2 \to\mathbb{R}$ (i.e., satisfying the triangle inequality) which is *homogeneous*, i.e., such that $l(g^n) = nl(g)$. A week later, the problem was solved by an active collaboration of several mathematicians (with a little help from a computer) through Tao’s blog. In fact a more general result was obtained, namely that any homogeneous length function on a group $G$ factors through its abelianization $G/[G, G]$.

I will discuss the proof of this result and also the process of discovery (in which I had a minor role).

- All seminars.
- Seminars for 2018

Last updated: 14 Feb 2020