Title: Extremal primes for non-CM elliptic curves
Speaker: Neha Prabhu (Queen's University, Kingston, Canada)
Date: 23 July 2018
Time: 3 pm
Venue: LH-3, Mathematics Department

For an elliptic curve $E$ over $\mathbb{Q}$, the distribution of the number of points on $E$ mod $p$ has been well-studied over the last few decades. A relatively recent study is that of extremal primes for a given curve $E$. These are the primes $p$ of good reduction for which the number of points on $E$ mod $p$ is either maximal or minimal. If $E$ is a curve with CM, an asymptotic for the number of extremal primes was determined by James and Pollack. The talk will discuss the non-CM case and focus on obtaining upper bounds. This is joint work with C. David, A. Gafni, A. Malik and C. Turnage-Butterbaugh.

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265
E-mail: chairman.math[at]iisc[dot]ac[dot]in