Our aim in this talk is to prove an analog of the classical Titchmarsh theorem on the image under the discrete Fourier-Laplace transform of a set of functions satisfying a generalized Lipschitz condition in the space $L_p, 1 < p \leq 2$ on the sphere. We also prove analogues of Jacksonâ€™s direct theorem for the moduli of smoothness of all orders constructed on the basis of spherical shift. Finally, we prove equivalence between moduli of smoothness and $K$-functional for the couple $(L^2 (\sigma^{m-1} ), W^r_2 (\sigma^{m-1} ))$.

This is joint work with S. El Ouadih, O. Tyr and F. Saadi.

- All seminars.
- Seminars for 2021

Last updated: 18 Apr 2021