Automorphic and modular forms in one complex variable (on the upper half-plane) belong to the most important topics in complex analysis, with close connections to number theory. In several variables, automorphic forms arise in the study of moduli spaces, with important theorems in algebraic and analytic geometry concerning quotient spaces by properly discontinuous groups of holomorphic transformations and their compactification. In addition, they lead to new and largely unexplored connections to analysis and operator theory, giving rise to von Neumann algebras which are not of type I. Finally, in the multivariable setting the Fourier analysis of automorphic forms (theta functions) introduce new arithmetic structures such as divisibility in Jordan algebras of higher rank.
I plan to divide these lectures into four parts:
Recently, in connection with string theory and topological quantum field theory (in dimension up to 8) there has emerged the concept of topological automorphic forms. These connections to topology and mathematical physics may be explored at the end. Another important avenue is the connection to the Langlands program, where automorphic representations are more generally related to (discrete) series representations of algebraic groups.
1. Automorphic Forms in Complex Analysis and Algebraic Geometry
2. Construction and Fourier Analysis of Automorphic Forms
3. Automorphic Forms and Operator Theory
4. Automorphic Forms in Scattering Theory