Graphs, subgraphs, Eulerian tours, trees, matrix tree theory and Cayley’s formula, connectedness and Menger’s theorem, planarity and Kuratowski’s theorem, chromatic number and chromatic polynomial, Tutte polynomial, the five-colour theorem, matchings, Hall’s theorem, Tutte’s theorem, perfect matchings and Kasteleyn’s theorem, the probabilistic method, basics of algebraic graph theory
No prerequisites are expected, but we will assume a familiarity with linear algebra.