MA 358A: Topics in Number Theory 3 (Iwasawa theory)

Credits: 3:0


Prerequisites :

This course is an introduction to classical Iwasawa theory, up to the proof of the Iwasawa main conjecture following Mazur and Wiles. We will begin with a review of results from algebraic number theory, class field theory etc. This will be followed by a study of $\mathbb{Z}_p$ extensions of number fields. We will then concentrate on the cyclotomic $\mathbb{Z}_p$ extensions of number fields. This will be followed by formulation of the Iwasawa main conjecture. For this part we need knowledge of $p$-adic $L$-functions. If time permits we will see Wiles’s proof of the Iwasawa main conjecture.


Suggested books and references:

  1. K. Iwasawa, On $\mathbb{Z}_l$-Extensions of Algebraic Number Fields, Annals of Mathematics Vol. 98, No. 2 (1973).
  2. R. Greenberg, Iwasawa Theory -- Past and Present, Advanced Studies in Pure Mathematics 30 (2001).
  3. P. Deligne, K. Ribet, Values of Abelian L-functions at Negative Integers over Totally Real Fields, Inventiones Mathematicae Vol. 59 (1980).
  4. A. Wiles, The Iwasawa Conjecture for Totally Real Fields, Annals of Mathematics Vol. 131, No. 3 (1990).

All Courses


Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 05 Dec 2025