MA 362: Stochastic Processes

Credits: 3:0

Prerequisite courses: MA361

First Construction of Brownian Motion, convergence in $C[0,\infty)$, $D[0,\infty)$, Donsker’s invariance principle, Properties of the Brownian motion, continuous-time martingales, optional sampling theorem, Doob-Meyer decomposition, stochastic integration, Ito’s formula, martingale representation theorem, Girsanov’s theorem, Brownian motion and the heat equation, Feynman- Kac formula, diffusion processes and stochastic differential equations, strong and weak solutions, martingale problem.

Suggested books and references:

  1. P. Billingsley, Convergence of probability measures
  2. Karatzas and Shreve, Brownian motion and stochastic calculus
  3. Revuz and Yor, Continuous martingales and Brownian motion
  4. A. Oksendal, Introduction to stochastic differential equations

All Courses

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 17 May 2024