MA 372: Abstract Harmonic Analysis

Credits: 3:0

Prerequisite courses: MA 223

Topological groups, locally compact groups, Haar measure, Modular function, Convolutions, homogeneous spaces, unitary representations, Gelfand-Raikov Theorem. Functions of positive type, GNS construction, Potrjagin duality, Bochner’s theorem, Induced representations, Mackey’s impritivity theorem.

Suggested books and references:

  1. Folland, G. B., A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, 1995.
  2. Hewitt, E and Ross, K., Abstract Harmonic Analysis, Vol. 1, Springer 1979.
  3. Gaal, S.A., Linear Analysis and Representation Theory, Dover, 2010.

All Courses

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 15 Jul 2024