RIEMANNIAN GEOMETRY

Prerequisites:  MA 331 Riemannian metric, Levi-Civita connection, geodesics, exponential map, Hopf- Rinow theorem, curvature tensior, first and second variational formula, jacobi fields, Myers Bonnet theorem, Bishop-Gromov volume comparison theorem, Cartan- Hadamard theorem, Synge’s theorem, de Rham cohomology and the Bochner techniques.  Topological implications of positive or negative curvature.  

Books

* Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine, Riemannian geometry.

Third edition. Universitext. Springer-Verlag, Berlin, 2004 Peter Petersen,
Riemannian geometry.

* Graduate Texts in Mathematics, 171. Springer-Verlag, New York, 1998.

  Timings      !0. 30  to 12 Noon on Tuesdays & Thursdays at Lecture Hall - II    


Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 20 May 2024