Add to Outlook calendar Add to Google calendar
Title: On residues of certain intertwining operators
Speaker: Sandeep Varma (TIFR, Mumbai)
Date: 16 August 2016
Venue: LH-1, Mathematics Department

Let $G$ be a connected reductive group over a finite extension $F$ of $\mathbb{Q}_p$. Let $P = MN$ be a Levi decomposition of a maximal parabolic subgroup of $G$, and $\sigma$ an irreducible unitary supercuspidal representation of $M(F)$. One can then consider the representation Ind$_{P(F)}^{G(F)}\sigma$ (normalized parabolic induction). This induced representation is known to be either irreducible or of length two. The question of when it is irreducible turns out to be (conjecturally) related to local $L$-functions, and also to poles of a family of so called intertwining operators.

Contact: +91 (80) 2293 2711, +91 (80) 2293 2265 ;     E-mail: chair.math[at]iisc[dot]ac[dot]in
Last updated: 27 Feb 2024