Formality is a topological property, defined in terms of Sullivan’s model for a space. In the simply-connected setting, a space is formal if its rational homotopy type is determined by the rational cohomology ring.
In 1975, Deligne, Griffiths, Morgan and Sullivan proved that any compact Kaehler manifold is formal. We study the analogue for some contact manifolds. Such spaces are obtained as the total space of some circle and sphere bundles over symplectic manifolds. These include some Sasakian manifolds.